• 제목/요약/키워드: shaking test

검색결과 540건 처리시간 0.023초

진동대 시험을 이용한 유기질토가 협재된 모래지반의 내진 안정성 평가 (Seismic Stability Evaluation of Sand Ground with Organic Soil by Using Shaking Table Test)

  • 정용진;백영철;이동혁
    • 한국지반환경공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.13-20
    • /
    • 2023
  • 강릉지역은 유기질토가 생성되기 적합한 환경을 지닌 지역으로 유기질토 상부와 하부에 퇴적 모래층이 분포되어 있는 충적층 지반이 존재한다. 본 연구는 모래층 사이에 유기질토 및 점토가 협재된 지반 상부에 조성된 강릉지역을 통과하는 철도노반의 내진 안전성을 평가하기 위하여 상사율을 고려한 철도노반 및 지반 모형을 제작하여 진동대 시험을 실시하고 유효응력 해석 결과값을 비교하여 내진 안정성을 평가하였다. 적용된 지진파는 인공지진파, 경주지진파, Borah 지진파, Nahanni 지진파, Tabas 지진파를 적용하였으며 상부 모래층의 최대 응답가속도는 0.239g(인공지진파), 과잉간극수압비는 0.509(Borah파)가 발생하는 것으로 분석되었다. 신설노반의 하부지반에 적용된 jet grouting에 의한 지반보강 효과로 인해 신설 노반의 발생변위는 기존노반에 비해 최소 33.7%에서 최대 56.7% 감소한 것으로 나타났다. 진동대 시험결과는 Flac 프로그램의 Finn 모델을 적용한 유효응력해석으로 검증하였으며, 진동대 시험값과 유사한 경향을 나타내었다.

Experimental identification of the six DOF C.G.S., Algeria, shaking table system

  • Airouche, Abdelhalim;Bechtoula, Hakim;Aknouche, Hassan;Thoen, Bradford K.;Benouar, Djillali
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.137-154
    • /
    • 2014
  • Servohydraulic shaking tables are being increasingly used in the field of earthquake engineering. They play a critical role in the advancement of the research state and remain one of the valuable tools for seismic testing. Recently, the National Earthquake Engineering Research Center, CGS, has acquired a 6.1m x 6.1 m shaking table system which has a six degree-of-freedom testing capability. The maximum specimen mass that can be tested on the shaking table is 60 t. This facility is designed specially for testing a complete civil engineering structures, substructures and structural elements up to collapse or ultimate limit states. It can also be used for qualification testing of industrial equipments. The current paper presents the main findings of the experimental shake-down characterization testing of the CGS shaking table. The test program carried out in this study included random white noise and harmonic tests. These tests were performed along each of the six degrees of freedom, three translations and three rotations. This investigation provides fundamental parameters that are required and essential while elaborating a realistic model of the CGS shaking table. Also presented in this paper, is the numerical model of the shaking table that was established and validated.

지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링 (Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction)

  • 오만교;김성환;한진태;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험 (Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers)

  • 배춘희;김연환;이상현;박영필
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

4m$\times$4m 진동대를 이용한 구조모델의 동적실험 (Dynamic Test of Structural Models Using 4m $\times$ 4m Shaking Table)

  • 이한선
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.207-214
    • /
    • 1997
  • The objective of this study is to review the current stare of earthquake simulation techniques using the shaking table and check the reliability. One degree-of-freedom(d.o.f.)and three d.o.f. aluminium shear models were used and 4m$\times$4m 6 d.o.f. shaking table was excitated in one horizontal direction to simulate 1940 El centro earthquake accelerogram (NS component). When the acceleration history of shaking table is compared to the desired one, it can be found that the overall histories are very similar, but that the lower frequency range (0~2 Hz) of the actual excitation has generally lower amplitude than that of the desired in fourier transform amplitude. Free vibration and white noise tests have shown almost the same values for natural frequencies, but shown quite different values for damping ratios, that is, 1.37% in case of r\free vibration test vs 14.76% in case of white noise test. The time histories of story shear versus story drift show the globally linear elastic behaviors. But the elliptical shape of the histories with one of the axis being the stiffness of the story implies the effect of viscous damping.

  • PDF

Collapse Behavior of an 18-Story Steel Moment Frame during a Shaking Table Test

  • Suita, Keiichiro;Suzuki, Yoshitaka;Takahashi, Motomi
    • 국제초고층학회논문집
    • /
    • 제4권3호
    • /
    • pp.171-180
    • /
    • 2015
  • A shaking table test was conducted at the E-Defense shaking table facility to investigate the damage and collapse behavior of a steel high-rise building under exceedingly large ground motions. The specimen is a one-third scale 18-story steel moment frame designed and constructed according to design specifications and practices used in the 1980s and 1990s. The shaking table tests used a long-duration, long-period ground motion simulated for a sequential Tokai, Nankai, and Nankai earthquake scenario. The building specimen was subjected to a series of progressively increasing scaled motions until it completely collapsed. The damage to the steel frame began through the yielding of beams along lower stories and column bases of the first story. After several excitations by increasing scaled motions, cracks initiated at the welded moment connections and fractures in the beam flanges spread to the lower stories. As the shear strength of each story decreased, the drifts of lower stories increased and the frame finally collapsed and settled on the supporting frame. From the test, a typical progression of collapse for a tall steel moment frame was obtained, and the hysteretic behavior of steel structural members including deterioration due to local buckling and fracture were observed. The results provide important information for further understanding and an accurate numerical simulation of collapse behavior.

동조액체 감쇠기를 설치한 철근콘크리트 축소모델의 진동대 실험 (Shaking Table Test of Small Scale RC Structure with Tuned Liquid Damper)

  • 우성식;이상현;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.113-116
    • /
    • 2005
  • In this study, in order to. investigate the effectiveness af tuned liquid damper (TLD) for the seismic performance enhancement af the existing reinforced concrete (RC) apartment structure which is nat seismically designed, shaking table test was conducted for the small scale five stary RC structure with TLD. TLD model was constructed to. have the frequency tuned to. the first modal frequency af the structure, $2\%$ mass ratio. af the first modal mass, and 0.08 liquid depth ratio. White noise with $0.2\~5Hz$ frequency bandwidth tests were performed using the shaking table at Korea Institute af Machinery and Materials, and the displacement and absolute acceleration af each floor were measured. Test results indicate that mare than $30\%$ seismic responses reduction can be achieved using TLD for RC structure under white noise.

  • PDF

쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험 (Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems)

  • 김재관;이원주;김영중;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

층응답을 고려한 소형면진장치의 진동대실험 (A Shaking Table Test of Small Isolation System Considering the Floor Response)

  • 김민규;전영선;이경진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.497-504
    • /
    • 2005
  • This paper presents the results of experimental studies on the equipment isolation effect considering the floor response. For this purpose, shaking table tests were performed. For the measuring the floor response, numerical analysis was performed. For the isolation for the equipment, Natural Rubber Bearing(NRB), High Damping Rubber Bearing(HDRB) and Friction Pendulum System(FPS) were used. Finally, it is presented that the isolation systems used in this test can be adopted for the small equipment isolation. But the rubber bearing used in this study affected to the temperature change very sensitively.

  • PDF

내진 천장시스템의 실규모 진동대 실험 및 해석 (Full-Scale Shaking Table Test and Analysis of Seismic Ceiling Systems)

  • 김호연;최용수;심재일;조창근
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.135-143
    • /
    • 2018
  • In the current research, a seismic ceiling system as one of non-structural elements in buildings has been developed by applying newly designed vertical hanger clips combined with M-bar channel clips. In order to evaluate the seismic performance of the developed system, full-scale shaking table tests of one story frame structure with the conventional ceiling system or the developed seismic ceiling system were performed with time-history responses under earthquake loads. The developed system was also evaluated by the time-history dynamic analysis. From seismic test and analysis, it was shown that the developed seismic ceiling system could give improved seismic performances to minimize displacements and damages of ceiling systems as well as enhance seismic safety of the ceiling system.