• Title/Summary/Keyword: shaft efficiency

Search Result 262, Processing Time 0.029 seconds

An Experimental Study on Torque Characteristics and Efficiency of Hydraulic Couplings (유체커플링의 토오크 특성과 효율에 관한 실험적 연구)

  • 박용호;염만오
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.46-55
    • /
    • 1994
  • The purpose of this research is to construct experimental test set-up and to establish a series of performance test program for the domestically developed hydraulic couplings, and to provide a software to store and utilize these experimental data which can be used to improve the performance of the hydraulic coupling and solve the job problems confronted during operation. The performance test consists of measurement of torque, rpm and efficiency of the hydraulic coupling for three different amounts of working fluid with various loads to the output shaft, and investigating the torque, rpm and efficiency characteristics with respect to these parameters. The results of this study can contribute to the development of variable speed hydraulic coupling and torque converter pursued by the domestic industry.

  • PDF

Effect of The Impeller Discharge Angle on the Performance of a Spurt Vacuum Pump

  • Lee, Ji-Gu;Kim, Youn-Jea
    • Applied Science and Convergence Technology
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The spurt vacuum pump is widely used to transfer sludge and slurry, and to control flow rate in a variety of processing fields, such as the oil, chemical, and fiber industries. The efficiency of the pump depends on the design parameters of the impeller, such as the number of blades, and the blade angle. In this study, the effect of the configuration of the impeller discharge angle of a spurt vacuum pump, which influences total head, shaft power, and efficiency, was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. In addition, the performance of the pump was evaluated on the basis of the correlations between the total head, pump efficiency, and pressure distribution.

Real Time Monitoring of Energy Efficiency Operation Indicator on Merchant Ships

  • Barro, Ronald Dela Cruz;Kim, Jun-Seong;Lee, Don-Chool
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.301-308
    • /
    • 2011
  • International Maritime Organization (IMO) proposed the Energy Efficiency Operation Indicator (EEOI) in 2005 and the Energy Efficiency Design Index (EEDI) in 2008 so as to address emission concern and regulation. Likewise, Ship Energy Efficiency Management Plan (SEEMP) and Greenhouse Gas (GHG) monitoring and management are also becoming an issue lately. This paper introduces the energy efficiency design index (operation indicator) monitoring system (EDiMS) software can continuously monitor $CO_2$, $NO_x$, $SO_x$, and PM values emitted from ship. The accurate inventory of ships GHG can be obtained from base of emission result during the engine shop test trial and the actual monitoring of shaft power and ship speed. In addition, the ability to store all exhaust emission and engine operation data can be applied as the useful tool of the inventory work of air pollution and ship energy management plan for the mitigation or reduction of ship emissions.

Forecasting and Assessment of the Grouting Effect, using a Numerical Model, to Prevent Groundwater Inflow during Excavation of a Vertical Shaft for a Selective Intake Structure (선택취수설비 굴착시 지하수 유입 방지를 위한 그라우팅 효과의 모델링 예측 및 평가)

  • Kim, Gyoo-Bum;Kim, Wan-Soo;Park, Jung-Hoon;Son, Yeong-Cheol;Kim, Jin-Woo
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.227-234
    • /
    • 2013
  • The vertical shaft of a selective intake structure, which is constructed in a large reservoir, is required to be impermeable and to employ a grouting technology to prevent water inflow from the reservoir or surrounding ground. In this study, groundwater inflow is estimated using a numerical model for two cases (i.e., grouting or non-grouting cases at the exterior of a vertical shaft) and compared with data measured during an excavation at the construction site of a selective intake structure in the Soyang reservoir, Korea. Groundwater inflow is estimated to range from 444 to 754 $m^3/d$ in the case of non-grouting and from 58 to 95 $m^3/d$ in the case of grouting. The groundwater inflow measured in a vertical shaft, which ranges from 30 to 100 $m^3/d$, is similar to the simulated amount. It is recommended that before the excavation of a shaft, water inflow is estimated using a numerical model and a grouting test to ensure excavation stability and improve excavation efficiency.

A study on structural performance of steel brackets in vertical shaft connected to double-deck tunnel (복층터널 연결 수직구용 철재브래킷 구조성능 연구)

  • Shin, Young-Wan;Min, Byeong-Heon;Nam, Jung-Bong;Lee, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Since the double-deck tunnel is deeply constructed in the city, it is necessary to secure the installation space of air supply and exhaust, escape passage stairs, elevator, distribution facilities and connection tunnels in the vertical shaft for the double-deck tunnel. Also, in order to minimize the effect of construction on adjacent area, it is necessary to construct the concrete structures at high speed in vertical shaft after tunnel excavation. Therefore, the slabs and the stairs in vertical shaft are needed to be constructed using precast concrete, and the rapid construction techniques of bracket for supporting the inner precast structure are needed. The bracket installation methods include cast-in-place concrete, precast concrete and steel. In this study, the improvement of the steel brackets with good economical efficiency and good workability was carried out in consideration of the improvement of the construction speed. We have developed a new bracket that is optimized through bracket shape improvement, anchor bolt position adjustment and quantity optimization. As a result of the structural performance test, it was confirmed that the required load supporting capacity was secured. As a result of structural performance test for bar type anchor bolt and bent anchor anchor bolt, it was confirmed that the required load carrying capacity was secured and that the load bearing capacity of bent anchor bolt was large.

Sensitivity Analysis of Design Parameters for Quadruple Offset Butterfly Valve by Operating Torque (작동 토크를 평가 함수로 하는 사중편심 버터플라이밸브 설계 파라미터 민감도 분석)

  • Lee, Dong-Myung;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.160-166
    • /
    • 2014
  • Because of industrial development, industrial facilities are becoming more complex and diversified. Plant industries are focused on productivity improvement, cost reduction, and product uniformity by simplifying production processes using automated control. Furthermore, plant industries require higher pressures and temperatures to improve energy efficiency. For this reason, the valves used in plants are operated under harsh conditions. Globe valves and gate valves are mainly used for high pressure these days. However, these valves have various problems, including low maintainability and high cost, due to structural problems. Therefore, butterfly and ball valve applications are increasing in industrial plants. This paper suggests a quadruple-offset butterfly valve that is applicable to bi-direction use, and the principle design parameters are suggested. The selected design parameters are an eccentric flange center line and shaft centerline(Offset 1), an eccentric seat centerline and disc shaft centerline(Offset 2), the angle between the flange centerline and seat wedge angle(Offset 3), the angle between the vertical direction of the disc shaft centerline and seat centerline(Offset 4), and the seat engagement angle. To analyze the interaction effect of the design parameters, ANOM and ANOVA were performed with an orthogonal array. The parameters were found to have effects in the following order: Offset 2, Offset 1, engagement angle, Offset 3, and Offset 4. The interaction between the parameters was insignificant.

A Case Study on the Shaft Construction Using Electronic Detonators (전자뇌관(HiTRONIC II™)을 이용한 수직구 시공 사례)

  • Hwang, Nam-Sun;Jin, Geun-Woo;Yeo, Jin-Hyeok;Jeong, Dong-Ho;Kim, Yeon-Hong
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.22-35
    • /
    • 2020
  • Recently, electronic detonators have been widely used in various sites. Electronic detonators are often used for the purpose of reducing the noise and vibration produced by blasting. In addition, electronic detonators are used for precision blasting at sites where mechanical excavation techniques are applied due to proximity of safety things or where blasting by conventional detonators are not possible. Various technologies are being attempted at the blasting site to increase constructivity and lower production costs by using electronic detonators. In this paper, we would like to introduce a construction case that use of electronic detonators in the situation of safety things being adjacent increases the efficiency of construction while meeting the ground vibration criteria of Ministry of Land, Infrastructure, and Transport. The blasting was carried out at domestic and overseas shaft using HiTRONIC II™, produced by Hanwha. Generally the shaft blasting is performed by dividing the blasting surface because of the noise and vibration caused by the blasting. but, in the case introduced in this paper, the blasting was carried out once without dividing the blasting surface, thus the construction period could be shortened.

A Study on the Fluid Interception Valve According to Non Rubbing Top and Bottom operation Shaft (무마찰 상하작동 축에 의한 유체차단 밸브에 관한 연구)

  • Cho, Myung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.27-32
    • /
    • 2005
  • Liquid valve is divided into cylinder and liquid part or composed of a single body structure. It becomes a connected structure to cylinder head after inserting stainless(STS) shaft to Teflon packing. In injecting and intercepting fluid, working efficiency becomes low because of the top and bottom round trip operation the friction between Teflon packing and STS shaft fluid leakage, decline of working environment, and each part replacement. And so target value is unattainable in productivity liquid valve design, quality, and structure change are studied. In this paper, designed to solve the existing problems basically, to prevent friction of Piston by developing diaphragm linked with piston, to satisfy long life, and to provide the prevention of leakage. The objective of the study is also to prevent remains fluid at nozzle tip after dispensing fluid, and bell close with the suction function in piston retreating.

Effect of Fluid Viscosity on Centrifugal Pump Performance (유체의 점성이 원심펌프 성능에 미치는 영향)

  • Kim, Noh-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.599-605
    • /
    • 2013
  • The characteristics of centrifugal pump performance according to fluid viscosity change were studied experimentally. A small volute pump with low specific speed was tested by changing the viscosity of an aqueous solution of sugar and glycerin, which is considered a Newtonian fluid. After finishing the test, the total head, shaft horsepower, and pump efficiency were compared with those of a water pump. The results are summarized as follows: (1) when the fluid viscosity is increased, the shut-off head shows very little change but the total head decreases gradually as the flow increases, and this makes the H-Q curve leaning rapidly, and (2) when the fluid viscosity is increased, the shaft horsepower shows very little change at the shutoff condition; however, the shaft horsepower increases more rapidly with an increase in the flow and viscosity.