• Title/Summary/Keyword: shaft efficiency

Search Result 262, Processing Time 0.028 seconds

Characteristics Analysis of a Direct-Drive AFPM Generator for 5kW Wind Turbine (직접 구동용 5kW AFPM 풍력 발전기 특성 해석)

  • Kim, Hyoung-Gil;Kim, Chul-Ho;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.773-774
    • /
    • 2006
  • Nowadays, the global interests are concentrated on the preserving of the clean environment, and the diminishing of the dependence on the fossil energy, and among the possible alternative energies, the wind turbine generating system is considered to be the best suited to produce high efficiency energy, without affecting the natural environment. The permanent magnet generators were been used for the wind power generating, for long time, with continuous efforts to improve the generating efficiency. And the latest trend on it is to develop an AFPM(Axial Flux Permanent Magnet)type, which is composed in the structure of rotor and stator shaped in the disc forms, and the direction of the flux at the air gap runs in parallel to the shaft. This thesis is on the study concerning with the analysis of the characteristics of the 5 kW at 300rpm direct drive AFPM generator which is suitable for the small scale wind turbine generating system. In it, the Electro-magnetically Coreless AFPM was been analyzed, the prototype generators been made, concentrated on interpreting the characteristics of the power output, and verifying it through the theoretical study and practical tests.

  • PDF

An analysis on the energy and daylighting efficiencies of rehabilitated Linde-Robinson Laboratory : Solar Telescope Daylighting with Coelostat (복원된 Linde-Robinson Laboratory의 에너지 및 채광시스템 효율 분석 : Coelostat Solar Telescope Daylighting)

  • Han, Hyun Joo;Selkowitz, Stephen;Oh, Seung Jin;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.53-63
    • /
    • 2014
  • Caltech's Linde-Robinson Laboratory was originally built in 1932 featuring a Spanish mission-style design, whose function was to facilitate a solar observatory with a coelostat solar telescope dome and a solar shaft extending from the roof to more than 36.58m below the ground. The building has now been transformed into a cutting-edge center for research and instruction in global environmental science that retains its original character while setting new standards in energy efficiency and green design. It is the first LEED Platinum lab in the USA for renovation of a historical research building, consuming only one-sixth of the energy that the lab's comparable laboratories do. This work introduces various energy and environmental strategies hired for its sustainable rehabilitation and, especially, examines the functional validity of solar telescope daylighting by a coelostat. Observations were made on the llumination of underground floors, where illuminances of 40~50 lx were measured.

Study on the Performance Evaluation of the Exhaust Stack used in High Riser Public House (초고층공동주택 국소배기용 입상덕트의 배기성능평가에 관한 연구)

  • Kwon, Yong-il;Lee, Tae-Kyu;Ahn, Jung-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.889-894
    • /
    • 2008
  • Exhaust system used in toilet and cooking place of high riser public house is roof fan of two basic types : natural roof ventilator and natural/forced roof ventilator. Natural/forced roof ventilator has a motor in the rotary shaft. There are many high riser public house in Korea. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser building depend on stack effect. This study investigates on stack pressure determined by exterior pressure and the difference pressure control in exhaust stack used in high riser public house. This paper focuses mainly on the effect of the time interval for power supply of motor installed in roof fan with function of natural wind velocity and of exhaust air volume of toilet. It is observed there are higher exhaust efficiency than the existing natural roof ventilator.

  • PDF

Fluid Film Characteristics between Cylinder Block and Valve Plates in Oil Hydraulic Piston Pumps (유압 피스톤 펌프의 실린더 블록과 밸브 플레이트 사이의 유막 특성)

  • Jung J.Y.;Song K.K.;Oh S.H.;Kim J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.8-14
    • /
    • 2004
  • Abstract: In the oil hydraulic piston pumps the clearance between the valve plate and cylinder block plays an important role for volumetric and overall efficiency. Thus, adequate lubricational fluid film is needed for the interface. In this study, fluid film thickness is measured by a gap sensor and a slip ring under operational conditions to observe the behavior of the lubrication mechanism in detail. To investigate the effect according to the valve plate types in view of the fluid film, three different types were designed. Leakage flow rate and shaft torque were also measured to clarify the effect according to the valve plate types. A broad range of experiments were conducted to provide reasonable data on the effect of fluid film. In this experiments two main parameters were found, of which the one is the discharge pressure and the other is valve plate geometry. As a result, we found that the spherical valve plate could get more stable fluid film thickness, maintain good efficiency for high pressure range than the other types.

  • PDF

Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine (스팀터빈의 공력성능 평가를 위한 공기 상사실험)

  • Lim, Byeung-Jun;Lee, Eun-Seok;Yang, Soo-Seok;Lee, Ik-Hyoung;Kim, Young-Sang;Kwon, Gee-Bum
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.29-35
    • /
    • 2004
  • The turbine efficiency is an important factor in power plant, and accurate evaluation of steam turbine performance is the key issue in turbo machinery industry. The difficulty of evaluating the steam turbine performance due to its high steam temperature and pressure environment makes the most steam turbine tests to be replaced by air similarity test. This paper presents how to decide the similarity conditions of the steam turbine test and describes its limitations and assumptions. The test facility was developed and arranged to conduct an air similarity turbine performance test with various inlet pressure, temperature and mass flow rate. The eddy-current type dynamometer measures the turbine-generated shaft power and controls the rotating speed. Pressure ratio of turbine can be controled by back pressure control valve. To verify its test results, uncertainty analysis was performed and relative uncertainty of turbine efficiency was obtained.

Effect of Inlet Geometry on Fan Performance and Inlet Flow Fields in a Semi-opened Axial Fan

  • Liu, Pin;Shiomi, Norimasa;Kinoue, Yoichi;Setoguchi, Toshiaki;Jin, Ying-Zi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.60-67
    • /
    • 2014
  • In order to clarify the effect of inlet bellmouth size of semi-opened type axial fan on its performance and flow fields around rotor, fan test and flow field measurements using hotwire anemometer were carried out for 6 kinds of bellmouth size. As results of fan test, the shaft power curve hardly changed, even if the bellmouth size changed. On the other hand, the pressure-rise near best efficiency point became small with the bellmouth size decreasing. Therefore, the value of maximum efficiency became small as the bellmouth size decreased. As results of flow field measurements at fan inlet, the main flow region with large meridional velocity existed near blade tip when the bellmouth size was large. As bellmouth size became smaller, the meridional velocity at fan inlet became smaller and the one at outside of blade tip became larger. As results of flow field measurements at fan outlet, the main flow region existed near rotor hub side.

A Study of Physicochemical treatment facility for Purifying the Mine Water in Dongwon Sabuk Mine., Ltd. ((주)동원 사북광업소 갱내수 정화를 위한 물리화학처리시설에 대한 연구)

  • An, Jong-Man;Lee, Yong-Bok;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2010
  • As the target area of this study, the coal mine site of Dongwon Sabuk mine.,ltd. is located in the remote mountainous region. To purify the acid mine water contaminated with heavy metals, a pilot-scale plant was built at the surrounded area of a mine shaft and operated to simulate active treatment system that could not only possibly setup the facility in a small available area, but also has a high efficiency. According to the various conditions of basin sequence, existence of sludge return, and lime injection position, six different types of treatment series were investigated in terms of treatment efficiency. As a result, the aluminum concentrations of the most effluents were in the range of 0.005~0.030 mg/L, which was too low to compare. The manganese concentration in the treated water were in the range of 3~9 mg/L, not following any regular trend. As found in the results of iron concentration, the case of addition of oxidation and sludge return steps showed higher efficiency than the others. As a standpoint of the installation of full-scale physicochemical treatment facility, the experimental results showed that the batch of oxidation and high density sludge return processes are existed and neutralization was followed by oxidation, had a stable treatment efficiency.

Effect of Rotor Design on Performance Characteristics of Slurry Pump Using Tornado Principle (토네이도 원리를 이용한 슬러리 펌프의 성능특성에 미치는 로터 형상의 영향)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.631-638
    • /
    • 2017
  • An experimental study was conducted to investigate the effect of a rotor design on the performance characteristics of a slurry pump using the tornado principle. The slurry pump differs considerably in terms of construction as well as operating principle when compared to the conventional centrifugal pump. The design parameters of the cross-shaped rotor included the diameter, thickness and height. The total head, shaft and water powers, and pump efficiency as a function of flow rate were compared with the design parameter. It was found that as the rotor diameter and height increase, the efficiency increases, whereas, an increase in the rotor thickness decreases the efficiency. In the rotor design condition of this study, the specific area and efficiency of the maximum height rotor were, respectively, smaller and higher than those of maximum diameter rotor.

Effects of Impeller Shape of Submersible Nonclogging Pump on its Performance (비 막힘형 수중 펌프 임펠러 형상이 펌프 성능에 미치는 영향)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1201-1207
    • /
    • 2012
  • This study was performed to develop a high-efficiency submersible nonclogging pump impeller. Toward this end, we simulated the effect of some parameters such as the outlet position of a blade ($h_I$), outlet width of a blade ($b_2$), and hub profile on the pump efficiency by using the commercial codes ANSYS CFX and BladeGen. The results showed that the pump efficiency was proportional up to $h_I$= 38 mm and $b_2$= 55 mm. It remained constant over these values. However, the head and shaft power were proportional to $h_I$ and $b_2$ in the simulated ranges. The effects of hub profile changes on the pump efficiency were relatively small compared to those of the other parameters.

Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency (LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF