DOI QR코드

DOI QR Code

Effect of Rotor Design on Performance Characteristics of Slurry Pump Using Tornado Principle

토네이도 원리를 이용한 슬러리 펌프의 성능특성에 미치는 로터 형상의 영향

  • Park, Sang Kyoo (School of Mechanical Design Engineering, Chonnam Nat'l Univ.) ;
  • Yang, Hei Cheon (School of Mechanical Design Engineering, Chonnam Nat'l Univ.)
  • 박상규 (전남대학교 기계설계공학부) ;
  • 양희천 (전남대학교 기계설계공학부)
  • Received : 2017.01.31
  • Accepted : 2017.08.15
  • Published : 2017.10.01

Abstract

An experimental study was conducted to investigate the effect of a rotor design on the performance characteristics of a slurry pump using the tornado principle. The slurry pump differs considerably in terms of construction as well as operating principle when compared to the conventional centrifugal pump. The design parameters of the cross-shaped rotor included the diameter, thickness and height. The total head, shaft and water powers, and pump efficiency as a function of flow rate were compared with the design parameter. It was found that as the rotor diameter and height increase, the efficiency increases, whereas, an increase in the rotor thickness decreases the efficiency. In the rotor design condition of this study, the specific area and efficiency of the maximum height rotor were, respectively, smaller and higher than those of maximum diameter rotor.

원심펌프와 구조 및 작동 원리가 다른 토네이도 원리를 적용한 슬러리 펌프의 성능특성에 미치는 로터 설계형상의 영향에 대한 실험적 연구를 수행하였다. 십자 구조인 로터의 설계변수는 직경, 높이 및 두께로 설정하였으며, 설계변수에 따라 성능특성을 비교하였다. 로터의 직경과 높이가 커지면 펌프효율이 증가하는 반면에, 로터의 두께가 증가하면 효율은 감소하였다. 본 연구의 설계조건에서 높이가 최대인 로터가 직경이 최대인 경우에 비해 비면적은 약간 작지만 펌프효율은 더 높게 나타났다.

Keywords

References

  1. Wilson, G., 1987, "The Effect of Slurries on Centrifugal Pump Performance," Proc. 4th Int. Pump Symposium, pp. 19-25.
  2. Shin, G. J., 2007, "Slurry Pump," J. Fluid Machinery, Vol. 10, No. 3, pp. 75-78.
  3. Park, S. K., Yun, J. G. and Yang, H. C., 2015, "Experimental Investigation of the Development of a Rotor Type Slurry Pump," J. Korean Soc. Marine Eng., Vol. 39, No. 4, pp. 450-456.
  4. Yun, J. E., 2013, "Development of Submersible Axial Pump for Wastewater," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 2, pp. 149-154. https://doi.org/10.3795/KSME-B.2013.37.2.149
  5. Yun, J. E., 2012, "Effects of Impeller Shape of Submersible Nonclogging Pump on its Performance," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 12, pp. 1201-1207. https://doi.org/10.3795/KSME-B.2012.36.12.1201
  6. Yun, J. E., 2011, "CFD Analysis of Submersible Slurry Pump with Two Blades," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 3, pp. 263-268. https://doi.org/10.3795/KSME-B.2011.35.3.263
  7. Pagalthivarthi, K. V., Gupta, P. K., Tyagi, V. and Ravi, M. R., 2011, "CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings," Int. J. Aero. Mech. Eng.,Vol. 5, No. 4, pp. 254-266.
  8. Khalil, M. F., Kassab, S. Z., Abdel Naby, A. A. and Azouz, A., 2013, "Performance Characteristics of Centrifugal Pump Conveying Soft Slurry," American J. Mech. Eng., Vol. 1, No. 5, pp. 103-112. https://doi.org/10.12691/ajme-1-5-1
  9. Sen, P. K., Das, L. G. and Halder, B., 2013, "The Characteristics of a Vertical Submersible Slurry Pump in Transporting Dredged Slurry," Int. J. Eng. Res. Appl., Vol. 3, No. 1, pp. 516-522.
  10. Crawford, J., van Sittert, F., and van der Walt, M., 2012, "The Performance of Centrifugal Pumps When Pumping Ultra-Viscous Paste Slurries," J. S. Afr. Inst. Min. Metall., Vol. 112, No. 11, pp. 959-964.
  11. Chandel, S., Singh, S. N. and Seshadri, V., 2011, "Effect of Additive on the Performance Characteristics of Centrifugal and Progressive Cavity Slurry Pumps with High Concentration Fly Ash Slurries," Coal Combustion and Gasification Products, Vol. 3, pp. 67-74. https://doi.org/10.4177/CCGP-D-11-00010.1
  12. Walker, C. I. and Goulas, A. 1984, "Performance Characteristics of Centrifugal Pumps When Handling Non-Newtonian Homogeneous Slurries," Proc. Inst. Mech. Engrs., Vol. 198A, No. 1, pp. 41-49.
  13. Mihalic, T., Guzovic, Z. and Predin, A., 2013, "Performance and Flow Analysis in the Centrifugal Vortex Pump," J. Fluids Eng., Vol. 135, pp. 011002-1-7.
  14. Gandhi, B. K., Singh, S. N. and Seshadri, V., 2002, 2013, "Effect of Speed on the Performance Characteristics of a Centrifugal Slurry Pump," J. Hydraul. Eng., Vol. 128, No. 2, pp. 225-233.
  15. Khalid, Y. A. and Sapuan, S. M., 2007, "Wear Analysis of Centrifugal Slurry Pump Impellers," Ind. Lubr. Tribol., Vol. 59, No. 1, pp. 18-28. https://doi.org/10.1108/00368790710723106
  16. Bross, S. and Addie, G.., 2002, "Prediction of Impeller Nose Wear Behaviour in Centrifugal Slurry Pumps," Exp. Therm. Fluid Sci., Vol. 26, pp. 841-849. https://doi.org/10.1016/S0894-1777(02)00174-7
  17. Walker, C. I. and Bodkin, G. C., 2000, "Empirical Wear Relationships for Centrifugal Slurry Pumps Part1: Side-Liners," Wear, Vol. 242, pp. 140-146. https://doi.org/10.1016/S0043-1648(00)00413-0
  18. Weinrib, H., Lucas, P., Keltner, R. and Johnson, W., 2000, "Tornado Effect Pump in the Fleet-Status Report," Naval Eng. J., Vol. 112, No. 4, pp. 317-334. https://doi.org/10.1111/j.1559-3584.2000.tb03339.x
  19. Johson, W., Myers, S., Schepis, R., Crew, J. and Keltner, R., 1997, "Zero Leakage Tornado Effect Pumps in Carrier Sewage Systems," Naval Eng. J., Vol. 109, No. 2, pp. 73-82. https://doi.org/10.1111/j.1559-3584.1997.tb02598.x
  20. Kim, S. Y., Kim, N. Y., Kim, J. Y., Kim, D. J., Yun, J. G. and Yang, H. C., 2015, "Flow Characteristics of Rotor Type Slurry Pump," Proc. KSME 2015 Fall Annual Meeting, pp. 457-460.
  21. Yun, J. G., 2012, "Pumping Device for Fluid," Korea, Patent 10011169690000.
  22. Kim, J. H., 2014, "An Experimental Study on Influence of Wearing Seal Groove Shape to Performance of the Pump," J. Korean Soc. Marine Eng., Vol. 38, No. 3, pp. 285-291. https://doi.org/10.5916/jkosme.2014.38.3.285
  23. Jeong, S. Y., Rhi, S. H., Seo, S. H. and Lee, K. B., 2015, "Optimum Design and Performance of Marine Sea Water Pump with Impeller using CFRP," J. Korean Academia-Industrial Cooperation Soc., Vol. 16, No. 11, pp. 7878-7884. https://doi.org/10.5762/KAIS.2015.16.11.7878