• Title/Summary/Keyword: shRNA

Search Result 179, Processing Time 0.025 seconds

Effects of Beta-glucan from Coriolus versicolor on Scavenger Receptor B1 Expression and their Involvement of Dectin-1 and Casein Kinase 2

  • Kim, Taeseong;Kim, Ye-Jin;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.25 no.6
    • /
    • pp.664-669
    • /
    • 2012
  • The mushroom Coriolusversicolor contains biologically active polysaccharides, most of which belong to the ${\beta}$ glucan group. Diverse physicochemical properties, due to different sources and isolated types of ${\beta}$-glucans, may induce distinct biological activities. Here, we examined the effects of ${\beta}$-glucan from Coriolusversicolor (CVG) on the scavenger receptor B1 (SR-B1) expression and the role of SR-B1 in CVG-induced phagocytosis regulation by using SR-B1-specific shRNA transfected cells. We also examined whether Dectin-1 and CK2 are involved in SR-B1 expression in CVG-treated cells. Our study results showed that CVG increased the SR-B1 expression via Dectin-1 and CK2 in macrophages. However, the inhibition of SR-B1 expression by shRNA did not completely eliminate the effect of CVG on the increase of phagocytosis suggesting that SR-B1 is not essential for CVG-stimulated phagocytosis. This study will contribute to identify CVG's mechanism of action and its use in the development of functional foods.

Inhibition of the NEDD8 Conjugation Pathway by shRNA to UBA3, the Subunit of the NEDD8-Activating Enzyme, Suppresses the Growth of Melanoma Cells

  • Cheng, Fang;Chen, Hao;Zhang, Lei;Ruo-Hong, Li;Liu, Yi;Sun, Jian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2012
  • Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), a ubiquitin-like protein, mainly functions through covalent ligation to cullin proteins. Conjugation of NEDD8 with cullins can promote ubiquitination, which plays a critical role in the degradation of many proteins. UBA3 is the subunit of NEDD8-activating enzyme which is one of the keys for NEDD8 linkage to cullin proteins. Previous research showed NEDD8 conjugation to be up-regulated in highly proliferative cell lines. In the present study, up-regulated NEDD8 conjugation was observed in melanoma cell lines by Western blot analysis. After down-regulation with a RNAi to UBA3, proliferation of M14 was suppressed in vitro and in vivo. In conclusion, up-regulated NEDD8 conjugation may be involved in the development of melanoma. Interference in this pathway might offera promising method for melanoma therapy.

Identification of Differentially Expressed Genes in Nickel[li]-Treated Normal Rat Kidney Cells

  • Koh, Jae-Ki;Lee, Sang-Han
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.85-90
    • /
    • 2004
  • Nickel(II) compounds are carcinogenic metals which induce genotoxicity and oxidative stress through the generation of reactive oxygen species. In search of new molecular pathways toward understanding the molecular mechanism of nickel(II)-induced carcinogensis, we performed mRNA differential display analysis using total RNA extracted from nickel(II) acetate-treated normal rat kidney cells (NRK-52E). Cells were exposed for 3 days to 160 and 240 uM nickel(II) concentrations. cDNAs corresponding to mRNAs for which expression levels were altered by nickel(II) were isolated, sequenced, and followed by a GenBank Blast homology search. Specificity of differential expression of cDNAs was determined by RT-PCR and Western blot analysis. Two of them (SH3BGRL3 and FHIT) were down-regulated and one (metallothionein) was up-regulated by nickel(II) treatment. The expression of these mRNAs were nickel(II) concentration-dependent. The levels of FHIT and metallothionein proteins were also consistent with the results for mRNAs. Overall, although the fundamental questions related to function of these genes in nickel(II)-mediated carcinogenicity are not answered, our study suggests that they can be interesting candidates for studies of molecular mechanisms of nickel(II) carcinogenesis.

  • PDF

Effect of MeOH Extract of Cibotium barometz for Repair and Regeneration of Nogo A-injuried Neuroblastoma Cells (구척(狗脊) 메탄올추출액이 신경세포의 재생 및 회복효과에 미치는 영향)

  • Kim, Sang-Tae;Kim, Jeong-Do;Kim, Young-Kyoon
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.2 s.137
    • /
    • pp.105-109
    • /
    • 2004
  • The effect of MeOH extract of Cibotium barometz (or Cibaro) on nogo-A expression was studied by neurite cone collapse and neurite outgrowth assay. The degrees of mRNA expression of BDNF, GDNF, and Caspase-3 in nogo-A were also examined with SK-N-SH cell lines using RT-PCR and confocal microscopy methods. We have shown that Cibaro treatment inhibits nogo-A activation in SK-N-SH cell lines. It has been shown that Cibaro increases the expression rates of neurofilament and enhances neurite outgrowth in neuroblastoma cells as increasing the amount of Cibaro. It has been also shown that Cibaro increases the expression rates of BDNF, GDNF mRNA in neuroblastoma cells as increasing the amount of Cibaro. These results suggest that Cibaro induces neutrite outgrowth by nogo-A inactivation and is, therefore, crucial for the treatments against anaplastic disc and spinal neuronal anesthesia.

The Effect of Indole Acetic and Abscisic Acid on Ribonucleic Acid and Ribonuclease (Indole acetic acid 와 Abscisic acid 가 핵산(核酸)과 RNase 에 미치는 영향에 관(關)하여)

  • Jo, D.H.;Lee, C.Y.
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.181-186
    • /
    • 1972
  • Wheat coleoptile sections were treated with either $1.5{\times}10^{-5}M$ ABA or $5×10^{-5}M$ IAA in vitro, the results may be summarized as follows, 1. The treatmert of IAA decreased the level of high molecular weight RNA F2 and F3 but that with ABA increased the F4 level. 2. IAA caused an increased activity of G2 isozyme, while ABA suppressed the activity of G3 isozyme. 3. The results may suggest that there may exist common effects of IAA and ABA on RNA and RNase. 4. The latent RNase activity caused by SH blocking reagent (p-hydroxymercury benzoate, Pb et al) was not observed.

  • PDF

Knockdown of MDR1 Increases the Sensitivity to Adriamycin in Drug Resistant Gastric Cancer Cells

  • Zhu, Chun-Yu;Lv, Yan-Ping;Yan, Deng-Feng;Gao, Fu-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6757-6760
    • /
    • 2013
  • Gastric cancer is one of the most frequently occurring malignancies in the world. Development of multiple drug resistance (MDR) to chemotherapy is known as the major cause of treatment failure for gastric cancer. Multiple drug resistance 1/P-glycoprotein (MDR1/p-gp) contributes to drug resistance via ATP-dependent drug efflux pumps and is overexpressed in many solid tumors including gastric cancer. To investigate the role of MDR1 knockdown on drug resistance reversal, we knocked down MDR1 expression using shRNA in drug resistant gastric cancer cells and examined the consequences with regard to adriamycin (ADR) accumulation and drug-sensitivity. Two shRNAs efficiently inhibited mRNA and protein expression of MDR1 in SGC7901-MDR1 cells. MDR1 knockdown obviously decreased the ADR accumulation in cells and increased the sensitivity to ADR treatment. Together, our results revealed a crucial role of MDR1 in drug resistance and confirmed that MDR1 knockdown could reverse this phenotype in gastric cancer cells.

The Non-Canonical Effect of N-Acetyl-D-Glucosamine Kinase on the Formation of Neuronal Dendrites

  • Lee, HyunSook;Cho, Sun-Jung;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.248-256
    • /
    • 2014
  • N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is a N-acetylhexosamine kinase that belong to the sugar kinase/heat shock protein 70/actin superfamily. In this study, we investigated both the expression and function of NAGK in neurons. Immunohistochemistry of rat brain sections showed that NAGK was expressed at high levels in neurons but at low levels in astrocytes. Immunocytochemistry of rat hippocampal dissociate cultures confirmed these findings and showed that NAGK was also expressed at low levels in oligodendrocytes. Furthermore, several NAGK clusters were observed in the nucleoplasm of both neuron and glia. The overexpression of EGFP- or RFP (DsRed2)-tagged NAGK in rat hippocampal neurons (DIV 5-9) increased the complexity of dendritic architecture by increasing the numbers of primary dendrites and dendritic branches. In contrast, knockdown of NAGK by shRNA resulted in dendrite degeneration, and this was prevented by the co-expression of RFP-tagged NAGK. These results suggest that the upregulation of dendritic complexity is a non-canonical function of NAGK.

The Therapeutic Role of Nanoparticle Shape in Traumatic Brain Injury : An in vitro Comparative Study

  • Youn, Dong Hyuk;Jung, Harry;Tran, Ngoc Minh;Jeon, Jin Pyeong;Yoo, Hyojong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.196-203
    • /
    • 2022
  • Objective : To perform a comparative analysis of therapeutic effects associated with two different shapes of ceria nanoparticles, ceria nanorods (Ceria NRs) and ceria nanospheres (Ceria NSs), in an in vitro model of traumatic brain injury (TBI). Methods : In vitro TBI was induced using six-well confluent plates by manually scratching with a sterile pipette tip in a 6×6-square grid. The cells were then incubated and classified into cells with scratch injury without nanoparticles and cells with scratch injury, which were treated separately with 1.16 mM of Ceria NSs and Ceria NRs. Antioxidant activities and anti-inflammatory effects were analyzed. Results : Ceria NRs and Ceria NSs significantly reduced the level of reactive oxygen species compared with the control group of SH-SY5Y cells treated with Dulbecco's phosphate-buffered saline. The mRNA expression of superoxide dismutases was also reduced in nanoparticle-treated SH-SY5Y cells, but apparently the degree of mRNA expression decrease was not dependent on the nanoparticle shape. Exposure to ceria nanoparticles also decreased the cyclooxygenase-2 expression, especially prominent in Ceria NR-treated group than that in Ceria NS-treated group. Conclusion : Ceria nanoparticles exhibit antioxidant and anti-inflammatory effects in TBI models in vitro. Ceria NRs had better anti-inflammatory effect than Ceria NSs, but showed similar antioxidant activity.

Protein Kinase C-mediated Neuroprotective Action of (-)-epigallocatechin-3-gallate against $A{\beta}_{1-42}$-induced Apoptotic Cell Death in SH-SY5Y Neuroblastoma Cells

  • Jang, Su-Jeong;You, Kyoung-Wan;Kim, Song-Hee;Park, Sung-Jun;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2007
  • The neurotoxicity of amyloid $\beta(A\beta)$ is associated with an increased production of reactive oxygen species and apoptosis, and it has been implicated in the development of Alzheimer's disease. While(-)-epigallocatechin-3-gallate(EGCG) suppresses $A\beta$-induced apoptosis, the mechanisms underlying this process have yet to be completely clarified. This study was designed to investigate whether EGCG plays a neuroprotective role by activating cell survival system such as protein kinase C(PKC), extracellular-signal-related kinase(ERK), c-Jun N-terminal kinase(JNK), and anti-apoptotic and pro-apoptotic genes in SH-SY5Y human neuroblastoma cells. One ${\mu}M\;A{\beta}_{1-42}$ decreased cell viability, which was correlated with increased DNA fragmentation evidenced by DAPI staining. Pre-treatment of SH-SY5Y neuroblastoma cells with EGCG($1{\mu}M$) significantly attenuated $A{\beta}_{1-42}$-induced cytotoxicity. Potential cell signaling candidates involved in this neuroprotective effects were further examined. EGCG restored the reduced PKC, ERK, and JNK activities caused by $A{\beta}_{1-42}$ toxicity. In addition, gene expression analysis revealed that EGCG prevented both the $A{\beta}_{1-42}$-induced expression of a pro-apoptotic gene mRNA, Bad and Bax, and the decrease of an anti-apoptotic gene mRNA, Bcl-2 and Bcl-xl. These results suggest that the neuroprotective mechanism of EGCG against $A{\beta}_{1-42}$-induced apoptotic cell death includes stimulation of PKC, ERK, and JNK, and modulation of cell survival and death genes.

A report of six unrecorded radiation-resistant bacterial species isolated from soil in Korea in 2018

  • Maeng, Soohyun;Sathiyaraj, Srinivasan;Subramani, Gayathri;Kim, Ju-Young;Jang, Jun Hwee;Kang, Myung-Suk;Lee, Ki-Eun;Lee, Eun-young;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • v.7 no.3
    • /
    • pp.222-230
    • /
    • 2018
  • Six bacterial strains 18JY42-3, 18SH, 18JY76-11, 17J11-11, 18JY14-14, and 18JY15-11 assigned to the phylum Proteobacteria, Firmicutes, and Actinobacteria were isolated from soil samples in Korea. The Cohnella species, strain 18JY42-3 was Gram-stain-positive, short rod-shaped and beige-colored. The Methylobacterium species, strains 18SH and 18JY76-11 were Gram-stain-negative, short rod-shaped and pink-colored. The Microterricola species, strain 17J11-11 was Gram-stain-positive, short rod-shaped and yellow-colored. The Paenarthrobacter species, strains 18JY14-14 and 18JY15-11 were Gram-stain-positive, short rod-shaped and white-colored. Phylogenetic analysis based on 16S rRNA gene sequence showed that strains 18JY42-3, 18SH, 18JY76-11, 17J11-11, 18JY14-14, and 18JY15-11 were most closely related Cohnella rhizosphaerae (MH497628; 98.8%), Methylobacterium goesingense (MH497632; 99.1%), Methylobacterium populi (MH497635; 99.9%), Microterricolagilva (MH504108; 98.4%), Paenarthrobacter nicotinovorans (MH497641; 100%), and Paenarthrobacter nitroguajacolicus (MH497646; 99.2%), respectively. All the six unrecorded strains showed resistance to UV radiation. This is the first report of these six species in Korea.