• Title/Summary/Keyword: sewer systems

Search Result 109, Processing Time 0.031 seconds

The measures to reduce sewer odor in South Korea through sewer odor reduction system in Los Angeles and San Francisco (Los Angeles와 San Francisco의 악취 저감 시스템을 통해 본 우리나라 하수도의 악취 저감 방안)

  • Ji, Hyonwook;Yoo, Sungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.445-451
    • /
    • 2018
  • Urban sanitary sewer systems can aid in preventing inundation, and can improve civil health by effectively disposing stormwater and wastewater. However, since sewage odor can cause adverse effects, numerous technical and administrative studies have been conducted for reducing such odor. European countries and the United States of America (USA) built modern sewer systems in the late 19th century, and have since been endeavoring to eliminate sewage odors. Several cities of the USA, such as Los Angeles (LA) that has a separate sewer system and San Francisco (SF) that has a combined sewer system, have produced and distributed odor control master plan manuals. Features common in the odor reduction plans of both these cities are that the odor reduction programs are operated in all the respective local regions and are supported by administrative systems. The primary aspectual difference between the two said programs is that the city of LA employs a sewage air purification system, whereas the city of SF controls the emission of major odor causing compounds. Compared to the existing sewer odor reduction systems of these two cities, South Korea is still in the initial phase of development. Through technical studies and policy implementations for sewer odor reduction, a foundation can be laid for improving the civil health quality.

Framework for a real-time control system of sewer systems (하수도 시스템의 실시간 제어시스템 구축 방안)

  • Ryu, Jaena;Baek, Hyunwook;Kim, Tae-Hyoung;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.649-659
    • /
    • 2013
  • Real time control (RTC) can be broadly defined as a system that dynamically adjusts the operation of facilities in response to online measurements in the field to maintain and meet the operational objectives, both during dry and wet weather conditions. RTC adds a dynamic component that is actively adjusted in real time based on system conditions. In terms of reducing or eliminating sewer flooding, CSOs and/or managing flows, implementation of RTC has various benefits to sewer system operation. It has been emerging as an attractive approach, but related elements (such as framework for the application, its components and equipments, aspects to be considered) towards its application on sewer systems have not been throughly introduced so far. The main goal of this study is to review several applications of RTC and firm guidelines published abroad, and finally to provide a framework for the proper application of RTC on sewer systems.

Estimation of Solid Deposition in Sewer Systems using MOUSE Model (MOUSE 모형을 이용한 관거 내 고형물 퇴적량 산정)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.397-407
    • /
    • 2007
  • The deposition of sewer solids during dry weather in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and to manage sewer systems efficiently, development of estimation equations for solid sediments In sewer systems is needed. However, estimation of solid sediments has performed using specific methods such as computer model before the development of estimation equations. In this study, solid sediments in sewer systems were estimated using MOUSE model for Gunja drainage basin in Korea and the estimated results were verified using estimation equations developed by the U.S. Environmental Protection Agency. As results, the estimated values using MOUSE model are smaller than that of equations developed in 1977 but greater than that of equations developed in 1984. Although the comparison between simulated and measured solid deposition is difficult due to the absent of measurement data, the estimated values using MOUSE model is reliable and can be used to develop estimation equations for solid sediment in Gunja drainage basin.

Analysis of Estimation Technique for Solid Sediments in Combined Sewer Systems (합류식 관거 내 고형물 퇴적량 산정기법 분석)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.405-415
    • /
    • 2006
  • The deposition of sewer solids during dry weather in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. Sewer solid accumulations in drainage systems also create the 'first-flush' phenomena during wet weather runoff periods. In order to solve these problems, measurement of these loadings for a given sewer system for extended period is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer sediment solid during dry weather in combined sewer systems developed by the U. S. Environmental Protection Agency were applied in a drainage system in Korea. As result, the appropriate equation can be selected and applied according to the available data. However, the estimated solid sediment shows considerable difference between methods which classified by model and estimation methods of variable. The estimated values using equations (1) $\sim$ (4) are greater than that of equations (5) $\sim$ (9) and intermediate models show greater values than elaborate or simplest models. The comparison between simulated and measured solid deposition is difficult due to the absent of measurement data, but this estimation method can be used usefully for the management of sewer solid with reduction of cost and effort if the measurement is carried out and the equation is adjusted according to the actual drainage systems in Korea.

Comparison of Pollutant Control in Combined Sewer Overflows and Separated Sewer Overflows using the Separation Wall (우오수분리벽을 이용한 합류식 하수관거와 분류식 우수관거의 월류수 제어효과 비교)

  • Lim, Bong-Su;Kim, Do-Young;Lee, Kuang-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.458-466
    • /
    • 2007
  • This study is to evaluate control effects of separation wall by surveying water quality and sewer overflows during dry and wet periods in combined sewer and separated sewer systems. Ravine water from the combined Seokgyo outfall with the separation wall was separated about four times larger than sewage flow during dry periods. The water quality of the combined Seokgyo outfall with separation wall during dry periods is flow weighed average BOD 61 mg/L, the combined Cheonseokgyo outfall without the separation wall is average BOD 71 mg/L, and the separated Pyeongsong center outfall is average BOD 41 mg/L. The BOD concentration in separated outfall form about 57% of the combined outfall, and this means the separated outfall (i.e. storm sewer) is polluted by inflow of sewage. The overflow load of the separated outfall is ten times higher than the combined outfall and its overflow load per rainfall is three times than combined outfall during the wet periods. Therefore, the control plan of overflow load is required in storm sewer. The control effects of the overflow load increased 79% by setting the separation wall in the combined sewer, and showed 27% increase without the separation wall in separated sewer, but forecasted over 80% increase of effects if the separation wall was set.

Model Predictive Control for Distributed Storage Facilities and Sewer Network Systems via PSO (분산형 저류시설-하수관망 네트워크 시스템의 입자군집최적화 기반 모델 예측 제어)

  • Baek, Hyunwook;Ryu, Jaena;Kim, Tea-Hyoung;Oh, Jeill
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.722-728
    • /
    • 2012
  • Urban sewer systems has a limitation of capacity of rainwater storage and problem of occurrence of untreated sewage, so adopting a storage facility for sewer flooding prevention and urban non-point pollution reduction has a big attention. The Korea Ministry of Environment has recently introduced a new concept of "multi-functional storage facility", which is crucial not only in preventive stormwater management but also in dealing with combined sewer overflow and sanitary sewer discharge, and also has been promoting its adoption. However, reserving a space for a single large-scale storage facility might be difficult especially in urban areas. Thus, decentralized construction of small- and midium-sized storage facilities and its operation have been introduced as an alternative way. In this paper, we propose a model predictive control scheme for an optimized operation of distributed storage facilities and sewer networks. To this aim, we first describe the mathematical model of each component of networks system which enables us to analyze its detailed dynamic behavior. Second, overflow locations and volumes will be predicted based on the developed network model with data on the external inflow occurred at specific locations of the network. MPC scheme based on the introduced particle swarm optimization technique then produces the optimized the gate setting for sewer network flow control, which minimizes sewer flooding and maximizes the potential storage capacity. Finally, the operational efficacy of the proposed control scheme is demonstrated by simulation study with virtual rainstorm event.

Estimation of Solid Sediments Load by Sewer and Land Surface for Maintenance of Combined Sewer Systems (합류식 관거 유지관리를 위한 하수 및 지표면 고형물 부하량 산정)

  • Lee Jae-Soo;Park Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.533-544
    • /
    • 2006
  • The deposition of solids in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and proper pipe management, estimation of solid loads from sewer and surface in a drainage basin is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer solid loads during dry weather in combined sewer systems and for estimating solid loads on surface in a drainage basin developed by the U. S. Environmental Protection Agency were applied and analyzed in Gunja drainage basin in Korea. As result, the estimated solid loads from sewer and surface are 205.8,759kg/yr and 1,321,993kg/yr respectively, and total solid loads is 1,527,752kg/yr. The estimated solid removal from street cleaning, dredging from pipe system and pumping house is 1,486,636kg/yr. Therefore, the applied methods show resonable results. More reliable estimation can be achieved if long-term measurements and adjustment of estimation equations are carried out, and this estimation methods can be used usefully for the management of combined sewer system with reduction of cost and effort.

Effect of Rainfall Design Frequency Determination on the Design of Storm Sewer System (강우 확률년수의 설정이 우수관거 설계에 미치는 영향)

  • Lee, Cheol-kyu;Hyun, In-hwan;Dockko, Seok;Kim, Hyung-jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.647-654
    • /
    • 2005
  • Recently, the economic losses caused by inundation are increasing due to the urbanization and industrialization, i.e., intensive land utilization and concentration of population and properties. It is regarded that the role of the storm sewer systems in urban areas becomes more important as one of the effective countermeasures for reducing the inundation losses. In this study, the effects of rainfall design frequency enhancement on the construction cost of the storm sewer systems were analyzed by increasing the design frequency from the present design frequency of the sewer systems, which is 5~10 years, to 15 years, 20 years and 30 years. The change rate functions of the design discharge and construction cost based on the various design frequencies were derived by regression analysis. According to the analysis, change the rate of design discharge at 15, 20, 30 years rainfall design frequencies were increased by 10%, 17.1%, and 27.2%, respectively, when compared to that at 10 year frequency. Furthermore, it was found that by increasing the design frequency from 10 years to 15 years, 20 years and 30 years, the construction costs were increased by 5.0%, 8.0% and 12.4%, respectively. Finally, their reliabilities need to be tested by applying the rate functions to the real storm sewer districts.

Evaluation of Inundation Risk Ranking for Urban Sewer Systems using PROMETHEE (PROMETHEE를 이용한 도시 하수관거시스템 침수위험순위 평가)

  • Song, Yang-Ho;Lee, Jung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.388-398
    • /
    • 2012
  • In this study, Entropy method and PROMETHEE(Preference Ranking organization METHod for Enrichment Evaluations) which is one of the multi criteria decision making methods are applied to estimate the relative inundation risk ranking of the urban sewer systems. Then, the evaluation factors were selected considering two main items to estimate the inundation risk using Entropy and PROMETHEE. In the first item considering topographical and environmental factor, average elevation, average slope, width of area, population, density of conduit were selected as the detailed factors of first item which have influence of the overflow occurrence and damage scale in urban sewer system. And, the relative reliability of sewer network was considered as the second item which can quantify the inundation appearance. Then, the reliability is estimated considering the number of overflow nodes and overflow volume simultaneously. Therefore, the suggested inundation risk evaluation method can be used as the evaluation index for sewer networks and contribute to decision making for the sewer rehabilitation policy.

Generating Alternative Sewers Based on GIS and Simulation Technique (GIS 및 Simulation 기법에 의한 하수도관거 대안 생성)

  • 김형복;김경민
    • Spatial Information Research
    • /
    • v.5 no.2
    • /
    • pp.185-194
    • /
    • 1997
  • Spatial decision support systems(SDffi), a new class of decision support system(DSS), result from the melding together of GIS and DSS, Planning support systems(PS5) add more advanced spatial analysis functions than GIS and intertemporal functions to the functions of SDSS. This paper reports the development of a planning support system providing a framework that facilitates urban planners and civil engineers in conducting coherent deliberations about the generation of satisficing sewers. 1he planning support system for the generation of satisficing sewers(PS5/GSS) was designed from the understanding that land use and development drive the demand for storm and sanitary sewers. Through four stages of supply, demand, alternative generation, and evaluation, PSS/GSS integrates basic planning, preliminary design, and engineering design of sewer. GIS and graphic user interface are excellent toolboxes for designing sewer networks, estimating the quantity of wastewater, and showing generated alternative sewers. A sewer model using simulation tedmique can generate an initial sewer. Users can define alternative sewers by the direct manipulation of sewer networks or by the manipulation of parameters in the sewer model. The sewer model evaluates the performance of the user defined alternatives.

  • PDF