• Title/Summary/Keyword: sewer odor

Search Result 17, Processing Time 0.019 seconds

A combined sewer design method using tractive force considering wastewater flow on non-rainy days and its application for improvement methods of sewer (청천시 오수량을 고려한 합류식 하수도 소류력 설계법과 이를 활용한 하수관거 개보수방안)

  • Ji, Hyon Wook;Yoo, Sung Soo;Song, Homyeon;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • When domestic sewage and rainwater runoff are discharged into a single sewer pipe, it is called a "combined sewer system." The sewage design standards in Korea specify the flow velocity based only on the volume of rainfall; therefore, sedimentation occurs on non-rainy days owing to the reduced flow rate and velocity. This sedimentation reduces the discharge capacity, causes unpleasant odors, and exacerbates the problem of combined sewer overflow concentration. To address this problem, the amount of sewage on non-rainy days, not just the volume of rainfall, should also be considered. There are various theories on sedimentation in sewer movement. This study introduces a self-cleansing velocity based on tractive force theory. By applying a self-cleansing velocity equivalent to the critical shear stress of a sand particle, sedimentation can be reduced on non-rainy days. The amount of sewage changes according to the water use pattern of citizens. The design hourly maximum wastewater flow was considered as a representative value, and the velocity of this flow should be more than the self-cleansing velocity. This design method requires a steeper gradient than existing design criteria. Therefore, the existing sewer pipelines need to be improved and repaired accordingly. In this study, five types of improvement and repair methods that can maximize the use of existing pipelines and minimize the depth of excavation are proposed. The key technologies utilized are trenchless sewer rehabilitation and complex cross-section pipes. Trenchless sewer rehabilitation is a popular sewage repair method. However, it is complex because the cross-section pipes do not have a universal design and require continuous research and development. In an old metropolis with a combined sewer system, it is difficult to carry out excavation work; hence, the methods presented in this study may be useful in the future.

Production of Hydrogen Sulfide Gas from Sediments in Concrete Sewer (하수관내 침전물의 황화수소가스 발생에 관한 연구)

  • Cho, Sun-Hyoung;Ko, Young-Song;Nam, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.83-91
    • /
    • 1996
  • The pulverized wastes originated from kitchen garbage grinder cause an additional load in sewage treatment plant and water environment. Therefore, several problems occur in sewer, such as microbial corrosion, odor, psychoda and fly interrupting flow of sewage etc. by their precipitation with earth and sand. This study was conducted on two experiments: hydrogen sulfide gas generation from sediments in sewer and anaerobic batch test. In anaerobic batch test, gas generation was increased when organic compounds were increased in concentration. Sulfide was decreased upon decreasing in sulfate concentration. In $H_2S$ gas generation test along the depth of sediments there were two different sampling sites which are apart from about 50 cm each other in a menhole. The one has the thickness of 55 cm from the surface, the other, of 60 cm. The hydrogen sulfide gas production rates were measured based on ranges from 0 to 10 cm, 10 to 20 cm, 20 to 30 cm for two samples. The results obtained were 1.08, between 0 to 10 cm in depth for the sample thickness of 55 cm and 3.07, 5.36, $5.42{\mu}g/g-VS{\cdot}hr$ in order of depth for the sample thickness of 60 cm, respectively.

  • PDF

Analysis of Environmental Odor Factors for Dorim Stream in Gwanak-gu, Seoul (서울시 관악구 도림천 복개 정도에 따른 환경 악취 요인 분석)

  • Soyoung Park;Gokce Nur Ayaz;Heewon Kim;Hyungkee Yoon;Taehong Kwon;Sungkyoon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.83-92
    • /
    • 2024
  • Background: In this study, we investigate the rapid increase in environmental odors and notable rise in civil complaints near Dorim Stream in the Gwanak-gu area of Seoul. Objectives: This study aims to identify the causal compounds responsible for environmental odors in the Dorim Stream and investigate the structural characteristics of the stream that influence odor generation. Methods: The research methodology involved setting up 41 sampling points, selecting panels for direct sensory evaluation to assess odor intensity, measuring dissolved oxygen and hydrogen sulfide concentrations, and using all-in-one low-temperature desorption gas chromatography (ATD-GC) and thermal desorption-gas chromatography-mass spectrometry (TD-GC/MS) analysis to identify odor-causing compounds. Results: The evaluation of Dorim Stream revealed that in areas with complete meandering, there were lower dissolved oxygen levels (4.5±2.67 mg/L) and higher odor intensity (4.0±0.92), while in partially meandering sections, higher dissolved oxygen levels (7.8±1.15 mg/L) and lower odor intensity (2.8±1.06) were observed. Hydrogen sulfide levels measured with sensors increased with higher temperatures, especially in the afternoon hours (12:00~14:00). Acetaldehyde was the dominant odor compound detected in both the Bonglim Bridge (0.4 ppm) area and Guro Bridge area (0.867 ppm), with concentrations more than twice as high near Guro Bridge. Odor-causing compounds identified by TD-GC/MS indicated a pungent, sulfurous odor in the Guro Bridge area and a musty odor in the Bonglim Bridge area. Conclusions: This study categorizes and analyzes the sources of odor in Dorim Stream in Seoul based on meandering patterns and the distribution of sewage facilities, highlighting the potential odor issues associated with combined sewage systems and sewer junctions and suggesting policy improvements.

Application of Biotechnology to Wastewater Treatments in Japan

  • Mori, Tadahiro
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.510.2-511
    • /
    • 1986
  • The biotechnology including genetic engineering is expected to be applied to various fields of wastewater treatments in order to promote biological reaction rate, to grade up the effluent quality and to advance the stability of microorganisms against temperature, pH and toxic substances. The current topics in Japan on application of biotechnology to wastewater treatment will be reviewed at the beginning of the presentation. Next, the research of Biochemical Engineering Laboratory is to be presented, especially focused on the following subjects ; (1) Application of genetic engineering to the investiation of heavy metal uptake by the resistant bacteria of Hg Cd or Zn. (2) Relationship between sulfate reducing bacteria and wastewater treatment, offensive odor and corrosion of sewer tranks.

  • PDF

Analysis and Suggestion of Estimation Equation for Sedimentation in Square Manholes with Straight Path (사각형 중간맨홀에서의 유사 퇴적 분석 및 산정식 제안)

  • Kim, Jung-Soo;Song Ju-Il;Rim Chang-Soo;Yoon, Sei-Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.177-189
    • /
    • 2012
  • Sediment load deposited in sewers and manholes reduces not only the capacity of pipes but also the efficiency of the whole sewer system. This causes the inundations of the low places and overflows at manholes, Moreover, sulfides and bad odor can occur due to deposited sediment with organic loads in manholes. Movements of sediment load in manholes are complicated depending on manhole size, location, inside structure, sediment load type, and time. Therefore, it is necessary to understand the movements of sediment load in manholes by experiments. In this study, experiments were implemented by a square manhole with straight path to measure deposited sedimentation quantity. The experimental apparatus was consisted of a high water tank, an upstream tank, test pipes, a sediment supplier, a manhole, and a downstream tank to measure the experimental discharge. The quantity of deposited sediment load was measured by different conditions, such as the inflow condition of sediment(continuous and certain period), the amount of inflow sediment, discharge, and the type of sediment. Jumoonjin sand(S=2.63, D50=0.55mm), general sand(GS, S=2.65, D50=1.83mm) and anthracite (S=1.45, D50=0.80mm) were employed for the experiment. The velocities in inflow pipe were 0.45 m/s, 0.67 m/s, and 0.9 m/s. Sediment load movement and sedimentation quantity in manhole were influenced by many factors such as velocity, shear stress, viscosity, amount of sediment, sediment size, and specific gravity. Suggested regression equations can estimated the quantity of deposited sediment in the straight path square manholes. The connoted equations that were evaluated through the experimental study have velocity range from 0.45 to 0.9m/sec. The study results illustrates that appropriation of design velocity ragne between 1.0 and 2.0m/sec could implement to maintain and manage manholes.

A Case Study on Cost-Benefit Analysis of the Septic Tank and Exclusive Sewage Pipe Line in Designing the large Building at Combined Sewer District (합류식 하수도 지역에 대형 건축물 설계시 정화조 및 전용오수관로의 비용편익분석 사례연구)

  • Oh, Hyun-Taek;Kim, Sung-Tai;Lim, Byung-In;Kang, Byong-Jun;Park, Kyoo-Hong
    • Journal of Digital Convergence
    • /
    • v.17 no.6
    • /
    • pp.169-175
    • /
    • 2019
  • The aim of this study is to examine the relative economic benefits between the septic tank and exclusive sewage pipe line in designing the large building at combined sewer districts. With the case study of Lotte World Tower Building, we analyze a cost-benefit between two alternatives. The research results showed 2 years of payback period, about ₩6.17 billion of NPV, and 1.93 of B/C ratio for installing the exclusive sewage pipe line in comparison with septic tank. This results provide useful guidelines for policy establishment of the septic tank closure and for plausibility of installing exclusive sewage pipe line when constructing a large building. In the future, it will be necessary to consider additional cost-benefit analysis including burden charge borne by causers, the burden of management responsibility with a exclusive sewage pipe line, and the economic benefits of reducing odor.

Identifying Cost and Benefit Items of Investment Projects to Offer New Public Services By the Use of Food Waste Disposers and the Direct Input of Feces in Sewers (주방오물분쇄기 사용 및 수세분뇨의 직투입에 따른 「새로운 공공하수도 서비스」제공을 위한 투자사업의 비용과 편익 항목 식별)

  • Oh, Hyun-Taek;Park, Kyoo-Hong;Kim, Sung Tai;Lim, Byung In
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.117-125
    • /
    • 2020
  • Our study identifies a cost and a benefit incurred in implementing an investment project to offer new public services by use of food waste disposers and direct input of feces in sewers. This is done with identifying costs of each processing division and benefits of the project by objective statistical data and engineering perspective. In summary, cost items identified are as follows: there are house laterals, removal of septic tanks, etc. for sewer pipes system. As to water quality conservation, cost incurs in storm water outfalls and divert chambers, sewage storage tanks, equipment to treat sewer overflows, and so on. With respect to sewage treatment plants(STPs), there are so many items as increase of contaminant loads in influent of STPs, and other items. There are benefit items in health improvement due to odor mitigation, increase of energy productivity, saving cost of food waste treatment and cleaning septic tanks, etc. These estimates will be used as a basic data for its economic effect.