• 제목/요약/키워드: sewer flow characteristics

검색결과 56건 처리시간 0.029초

하수관거 정비지역의 관거이송 유량 및 수질특성 변화 (Changes in Characteristics of Sewer Flow & Its Water Quality from the Sewer Rehabilitation Area)

  • 박준대;오승영;최윤호;김용석
    • 한국물환경학회지
    • /
    • 제31권2호
    • /
    • pp.196-208
    • /
    • 2015
  • This study analyzed the characteristics of sewer flow and its water quality, and investigated changes in the characteristics in three areas where the sewer rehabilitation projects have been carried out. In S1 area, the patterns of the flow became regular and the range of the fluctuation decreased after the sewer rehabilitation. The flow and its BOD concentration increased. The infiltration/inflow and exfiltration showed clear distinction before and after the sewer rehabilitation in this area. In S2 area, the patterns and the range of the fluctuation of the flow made no differences before and after the sewer rehabilitation. The flow decreased slightly and its BOD concentration increased considerably after the sewer rehabilitation. Big decrement in stormwater inflow but small in exfiltration appeared in this area. In S3 area, the patterns and the range of the fluctuation of the flow made no differences before and after the sewer rehabilitation. The flow decreased slightly and its BOD concentration increased in a small rate in this area.

수위-유속 분산 그래프를 통한 하수흐름 특성 분석 (Sanitary sewer flow characteristics through a depth-velocity scatter graph analysis)

  • 손주영;오재일
    • 상하수도학회지
    • /
    • 제28권6호
    • /
    • pp.647-655
    • /
    • 2014
  • To perform long-term sewer monitoring, It is important to understand the nature of the wastewater flow that occurs at the point on early stage of the monitor and to prevent in advance a problem which may caused. We can infer the flow properties and external factors by analyzing the scatter graph obtained from the measured data flow rate monitoring data since an field external factor affecting the sewage flow is reflected in the flow rate monitoring data. In this study, Selecting the three points having various external factors, and we Inferred the sewer flow characteristics from depth-velocity scatter graph and determined the analysis equation for the dry-weather flow rate data. At the'point 1' expected non-pressure flow, we were able to see the drawdown effect caused by the free fall in the manhole section. At the'point 2', existed weir and sediments, there was backwater effect caused by them, and each of size calculated from the scatter graph analysis were 400 mm and 130 mm. At the'Point 3', there is specific flow pattern that is coming from flood wave propagation generated by the pump station at upstream. In common, adequate equations to explain the dry weather flow data are flume equation and modified manning equation(SS method), and the equations had compatibility for explaining the data because all of $R^2$ values are over 0.95.

상관성 분석을 통한 침입수 발생 영향인자 분석 (Factor analysis on infiltration using correlations)

  • 류재나;오재일;최익훈
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.185-192
    • /
    • 2011
  • Pearson's correlation was used to determine relations between infiltration and affecting factors using flow monitoring data measured in 24 areas with different characteristics. Factors showed relatively high correlations than others were indexed to determine infiltration rates of the study area. Among 8 factors(service area, sewer length, sewer diameter, multiplier of sewer length and diameter, number of manholes, population, number of properties, number of households) tested, the multiplier of sewer length and diameter, the number of population and the number of household in each service area indicated higher correlation coefficient(>0.8) than others. The goodness of fitness of linear regressions between infiltration and the factors followed the order: sewer length and diameter(0.68)> population(0.65)> number of household(0.60). Infiltration rates calculated by the multiplier of sewer length and diameter, the number of population and the number of household in each service area were 0.046~1.0396 $m^{3}/d{\cdot}mm-km$, 0.0917~1.7355 $m^{3}/capita{\cdot}d$, 0.196~4.529 $m^{3}/household {\cdot}d$ respectively. After sewerage rehabilitation work of the area, the infiltration rates calculated by above factors with high correlations are expected to be used for comparing effectiveness of the work once they are estimated under the same flow measuring conditions.

우리나라 하수도시설의 첨두부하율 영향요소 분석 (Analysis of Factors Affecting Peak Loading Coefficient of Sewer Works in Korea)

  • 현인환;이영호
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.877-884
    • /
    • 2011
  • Although peak loading coefficient is one of critical design factors for sewer works, its detailed affecting factors were not analyzed because of limited data availability. This study analyzed the affecting factors on peak loading coefficient with plenty data obtained from several newly constructed sewer works. Simple and multiple regression analysis methods were adopted to analyze the relationships of each variable with or without data filtering. Drainage population, drainage area, population density, and daily sewage flow per person showed very weak relationships under diverse characteristics of cities. However, daily sewage flow per person showed stronger relationships with peak loading when daily sewage flow per person was splitted into two ranges. Population density (i.e., drainage population divided by drainage area) and daily sewage flow per person considerably were related with peak loading coefficient when daily sewage flow per person is less than about 400 Lpcd.

오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 - (Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load -)

  • 이두진;신응배
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.

처리분구별 하수발생 특성 조사 - A시 O, M 처리분구 - (Investigating Wastewater Flow Characteristics - O and M Treatment Basins of A City -)

  • 황병기
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.348-356
    • /
    • 2005
  • Water quality sampling surveys and continuous measurement of flow were conducted to identify wastewater flow characteristics for representative catchment of O and M treatment basins in A city. For HS-1 station representing commercial area, wastewater flow rises in the beginning of office-working hours, moves up and down within narrow range, and lasts till office-leaving hour, and falls gradually reflecting worker's returning home. However, in HS-2 station representing residential area, wastewater flow has two peaks, which are before office-going hour and after office-leaving hour. In residential area, the flow rate of weekends is higher than that of weekdays because it reflects population, being not contributed to generate wastewater during the working hours of weekdays, stay home and produce wastewater for weekends period. To determine the priority for rehabilitation of sewer system, infiltration rate was computed by dividing infiltration flow by mean diameter and total length of sewer, and HS-1 station ranked the first.

단말 오수관거 에서의 퇴적특성과 퇴적방지를 위한 설계법 고찰 (The Characteristics of Sediment and a Design Method for Preventing Sediment in the beginning Lateral Sewer)

  • 황환국;김영진;한상종;정호찬
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.789-797
    • /
    • 2009
  • The flow in the beginning lateral sewer can be characterized as intermittent and unsteady, and a moment maximum flow energy is required to transport fecal solids in the sewer. It is thus difficult to design to satisfy a minimum velocity criteria (0.6m/s), because of the substantially lower discharge in the beginning lateral sewer. This study is the result of a field survey, and aims to determine a design criteria for the minimum slope to prevent sediment in a lateral sewer. The survey performed on the two flat small catchments in Goyang-si consisting of D400mm hume-pipe, aimed to understand the manner in which the scope of a sewer slope has an effect on sediment in the beginning lateral sewer. The survey showed that the sewer slope below 3‰ had sedimentation of 88.7%, while the sewer slope of 3~6‰ had sedimentation of 47.8%. In addition, the minimum design slope was estimated to refer to the result of hydraulic experiments from Public Works Research Institute in Japan. Analysis showed that the D400mm hume pipe should be installed with a slope of 6.5‰ to prevent sediment in the beginning lateral sewer. For future installations, the study results showed that a D300mm plastic pipe requires a minimum slope of 3.5‰, and a D250mm plastic pipe requires a minimum slope of 3.3‰ in the beginning lateral sewer.

점착성 및 비점착성 고형물이 퇴적된 관로 내 하수흐름의 특성 조사 (Characteristics of Sewage Flow in Sewer Pipes Deposited with Cohesive and Non-cohesive Solids)

  • 이태훈;강병준;박규홍
    • 융합정보논문지
    • /
    • 제10권7호
    • /
    • pp.153-159
    • /
    • 2020
  • 본 연구에서는 실제 하수관로 내 흐름상태를 파악하기 위하여, 건기동안 처리구역 최상부에 위치한 관로의 수위, 유속, 유량의 값을 실제 측정하여 추정된 하수의 전단응력을 조사하였다. 수세분뇨 및 토사를 모사하기 위해 점착성 및 비점착성 고형물(두부와 모래)을 따로 또 함께 투입한 후 흐름의 상태를 촬영하였는데, 본 실험대상관로에서는 큰 방해없이 침전물이 하수와 함께 씻겨 내려가는 것을 관찰하였다. 경사가 0.00319인 관로에서 주중 하수의 최소전단응력을 초과하는 빈도는 0이었고 0.00603의 기울기의 경우 10회였다. 현장조사기간 중 최소전단력을 초과하는 이벤트는 1회 발생하여 하수도에서 악취가 증가될 가능성을 시사하였다. 경사가 가파른 관로의 최대전단응력은 2.9~3.1N/㎡이었지만, 완만한 경사에서는 1.6~1.7 N/㎡으로 감소하였다. 강우시 합류식 관로로 유입될 수 있는 비응집성 입자를 포함한 하수는 최소전단응력 기준 이하로 유지되는 시간 간격이 주중에 비해 주말동안 증가하였다. 설계기준에 따라 설계된 본 실험대상 관로에서는 수세분뇨가 직투입되어도 관로내 침전물이 오래 퇴적상태로 머물지 않고 하수와 함께 흘러갈 수 있음을 확인할 수 있었다.

강우시 합류식 하수관거의 월류수 차집용량 산정을 위한 유출특성 분석 (Analysis of Storm Water Run-off Characteristics to Evaluate the Intercepted Volume of CSOs during Wet Weather)

  • 최성현;최승철;김병욱;임재명
    • 상하수도학회지
    • /
    • 제18권3호
    • /
    • pp.320-330
    • /
    • 2004
  • Most of domestic city is served combined sewer system among various sewer system like as separate sanitary, combined sewer system and storm sewers. During the wet weather, sewer and rainfall have been overflowed because it is over capacity of the combined sewer system; that is called combined sewer overflows(CSOs) This research was carried out to investigate runoff characteristics of combined sewer and to evaluate the effective CSOs volume in Hong-Chun gun. During wet weather, SS load of first rainfall at H-1, H-2, and H-3 were 600kg/event, 370kg/event, and 289kg/event, respectively. 55 load of second rainfall were 216kg/event, 113kg/event, and 37.2kg/event. When the first rainfall, event mean concentrations(EMCs) at each site were 702mg/L, 816mgjL and 861.5mg/L. The second rainfall's event mean concentrations(EMCs) were 99.9gm/L, 161.9mg/L, 103.6mg/L. Rrst flush coefficient b at each site were 0.237,0.166, and 0.151. When the first rainfall, the flow containing 80% of pollutant mass of CSOs at each site were 0.55, 0.23, 0.48 in first rainfall, respectively. The case of second rainfall were 0.79, 0.83, 0.81. Most of all, characteristics of rainfall like as analysis of first-flush, CSOs volume, pollutant loadings is investigated to decide intercepted volume for control of CSOs.

분류식 하수관로에서 유입수 표준매뉴얼 산정방법의 보수적 수정 결과 (Conservative Adjustment of the Standard Calculation Method of Inflow Water Into a Separated Sewer System)

  • 추민경;배효관
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.423-430
    • /
    • 2020
  • To improve the low treatment efficiency of sewage treatment plants, the separated sewer system must be maintained to provide an adequate flow rate and quality of the sewage under the effect of inflow. In this study, data from five locations of Namsuk, Dukgok1, Dukgok2, Kanggu, and Opo were used to conservatively calculate the inflow water volume. The sewer flow and rainfall data were collected in 2017. The factors in the standard method used to calculate the inflow of the combined sewer pipes including "rainy days", "rainfall impact period", and "period for basal sewer" were defined as 3 mm/day, continuous rain for two days, and two weeks prior to the inflow generation, respectively. "Rainy days", "rainfall impact period", and "period for basal sewer" were conservatively adjusted to 5 mm/day, continuous rain for five days, and three weeks prior to the inflow generation, respectively. As a results of the adjustment, the linearity (r2) was improved except for in Dukgok1. This implies that the conservative adjustment made in this study could improve the management quality of sewer pipes. Also, the linear correlation coefficient (ai) between inflow and rainfall showed a large difference between the target locations, which can be another monitoring factor affecting the quality of sewer pipes. To improve the correlation based on the individual characteristics of the locations in Korea, the automatic algorithm for the inflow calculation should be developed by innovative intellectual technologies for application to the entire national area.