• Title/Summary/Keyword: settlement reduction

Search Result 214, Processing Time 0.024 seconds

Bearing Capacity Characteristics of Stone Column by Numerical Analysis (수치해석에 의한 쇄석기둥의 지지력 특성)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which can enhance ground conditions such as the settlement reduction and the increasement of bearing capacity with applying the crushed stone instead of sand. In recent, general construction material, sand is in short of supply. Therefore, the bearing capacity improvement by the stone column is considered as the alternative method needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improvement effect of ground is not yet prepared. For the analysis of above mentioned points, the behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, the formula for the bearing capacity estimation of stone column was suggested. This formula was verified by comparing the prediction result of in situ test.

  • PDF

Evaluation of the influence of pillar width on the stability of a twin tunnel (필라폭이 병설터널의 안정성에 미치는 영향 평가)

  • You, Kwang-Ho;Kim, Jong-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.115-131
    • /
    • 2011
  • Recently, considering the aspects of disaster prevention and environmental damage, the construction of a twin tunnel is increasing. When constructing a twin tunnel, the stresses are concentrated at the pillar so that stability of the tunnel is decreased. Since the previous studies on the behavior of a twin tunnel pillar are mainly restricted to the estimation of the tunnel behavior and the analysis of surface settlement, there is a limit to a quantitative stability estimation of the pillar. Therefore, it was quantitatively investigated how the pillar width of a twin tunnel affects its stability. To ensure this end, global tunnel safety factors obtained numerically using shear strength reduction technique, local safety factors of a pillar using the equation that Matsuda et al. suggested, and strength/stress ratios of the pillar were estimated and their results were analyzed for two sections with different rock covers. For a reasonable design of a twin tunnel pillar, it was turned out that strength/stress ratio, the local pillar safety factor, and global tunnel safety factor should be used interrelatedly rather than independently.

Application of Copper Slag as a Substitute for Sand in Sand Compaction Pile (모래다짐말뚝의 모래대체재로서 동슬래그의 활용)

  • 천병식;정헌철
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.195-207
    • /
    • 2002
  • The domestic, quantity of copper slag as a by-product at copper smelting process reaches 700,000 tons annually while its application is limited. Therefore, the secure disposal plan of copper slag is urgently required. For this reason, in this study, copper slag was used as a substitute for sand in Sand Compaction Pile that is one of the improvement methods of soft ground because the particle size distribution of copper slag ranges from 0.15mm to 5m(coarse state) and it maintains stable glassy state environmentally. The geotechnical characteristics of copper slag were evaluated through laboratory model tests and the field application of copper slag was compared with generally used sand by pilot tests. From these experimental results, copper slag's material characteristics, bearing capacity, settlement reduction and improvement effects of surrounding ground were found to be superior to generally used sand. The copper slag can be used as a substitute far sand in the Sand Compaction Pile method and as recycling material of industrial by-product with high econonical and environmental value when natural resources are being exhausted.

Field Tests for the Application of Bottom Ash and Shred Tire as Fill Materials (석탄회 및 폐타이어의 성토재로의 적용성 검토를 위한 현장시험)

  • Lee, Sungjin;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.29-37
    • /
    • 2013
  • In this study, we constructed the test embankment with four kinds of sections(2 kinds of bottom ash; tire shred-bottom ash mixture, weathered soil) in field and had been monitoring the behaviour of the test embankment and change of ground water quality for 1 year. In the geotechnical aspects, there was no relative difference of deformation in 4 test materials section and we could not see the possibility of the strength-reduction of coal ash materials by freezing inside of the embankment. In addition, no settlement was observed in the test sections because the base soil of the test sections was rigid enough that no consolidation was occurred. In the examination of water quality, all of the heavy metals and negative ions were detected below the drinking water standards except for sulfate($SO_4^{2-}$). In the beginning of measurement, higher concentrations of sulfate from 4 test sections were detected than drinking water standard for 20 days after beginning of the test but the concentrations decreased below the drinking water standard after 50 days after the tests.

Experimental and Numerical Investigation of the Performance of Vertical Thermosyphon for Frozen Ground Stabilization (실험과 수치해석을 통한 동토지반 안정화용 수직형 열사이펀의 성능평가)

  • Lee, Jangguen;Lee, Chulho;Jang, Changkyu;Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.45-56
    • /
    • 2014
  • Frozen ground in cold region consists of an upper active layer and lower permafrost which is permanently frozen land. During the summer season, the air temperature is high enough to make the frozen ground melt, which causes the reduction of soil strength and thaw settlement. These phenomena result in structural instability, so it is necessary to apply frozen ground stability techniques. Thermosyphon is a closed natural two-phase convection device to maintain the ground temperature below $0^{\circ}C$ by extracting heat from the ground and discharges it into the atmosphere. Experimental and numerical investigation has been performed to estimate the effect of the refrigerant filling ratio in thermosyphon using R-134a refrigerant and the thermal conductance of the thermosyphon.

The Distinctive Feature of Acupuncture Treatment in ZhangJinYoPian(藏珍要編) (19세기 조선 침구서 장진요편의 침법 연구)

  • Oh, Jun-Ho
    • Korean Journal of Acupuncture
    • /
    • v.27 no.1
    • /
    • pp.159-168
    • /
    • 2010
  • Objective: ZhangJinYoPian(藏珍要編, ZJYP) is a book witten by Song-WooGe in the late 19th century. While Korea has lost this book to tell us Korea traditional acupuncture treatment in the late 19th century, This book appeared as a manuscript in Japan. There is no reaserch or study carried out for this book. Furthermore, a few people know existence of this book. So I analyzed acupuncture treatment of the ZJYP and sort out the distinctive feature of it. Method: For that, I studied bibliographic information of this book and classified contents of it into three parts - medical thought, needle manipulation and acupoint selection to consider it's caracteristics. Results and Conclusions: 1. The author of ZJYP thought that weakness of good power in the body and strongness of evil power out of the body cause a disease. so Doctor should examine quality of both to care patient's pain. 2. The author of ZJYP thought that needle manipulation is one of the most important thing. Doctors can use needle manipulation to control patient condition. Especially, he suggested cooling and heating manipulation except reinforcement and reduction. 3. He stressed viscera and bowels. he located viscera and bowels theory in front of the book to explain relationship of these. It shows us that ZJYP maintained academic characteristics of acupuncture in Chosun-Korea. 4. While He minimized the number of acupoints used in treatment, he multiplied its combination. He selected one or two acupoints from each meridian pathway. It include Eight Confluent points(八脈交會穴). But these points were used in different ways to control the viscera and bowels, not to care the eight extra meridians.

Frost Heave of Frost Susceptible Soil According to Performance of Thermo-syphon (열 사이펀 성능에 따른 동상민감성 지반의 거동 비교)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.27-40
    • /
    • 2021
  • The construction method to prevent the frost heave or thaw settlement is called the ground stabilization method, and the thermo-syphon is one of the typical ground stabilization methods. The thermo-syphon has recently been developed with a simple analysis model and thermal analysis has been carried out, but the frost heave of frost susceptible soil was not considered. This study was conducted using ABAQUS internal user subroutine to develop the numerical analysis model (Coupled thermo-mechanical) that can simultaneously perform thermal analysis for the temperature change of the soil according to the thermo-syphon and structural analysis to predict the frost heave of the soil accordingly. As a result of the numerical analysis, the frost heave of the soil decreased as the performance of the thermo-syphon increased. As for the main results, when the thermo-syphon which has contain 25%, 50%, and 100% of refrigerant filling ratio was applied, the reduction ratio of the frost heave was 5.5%, 14.4%, and 21% respectively.

Is the U.S. Trade Expansion Act Section 232 Consistent with GATT/WTO Rules? (미국 무역확장법 제232조 조치는 GATT/WTO 규정에 타당한가?)

  • Yin, Zi-Hui;Choi, Chang-Hwan
    • Korea Trade Review
    • /
    • v.44 no.1
    • /
    • pp.177-191
    • /
    • 2019
  • Global trade protectionism has increased further and U.S. priorities and protectionism have strengthened since Trump took office in 2017. Trump administration is actively implementing tariff measures based on U.S. domestic trade laws rather than the WTO rules and regulations. In particular, the American government has recently been imposing high tariffs due to national security and imposing economic sanctions on other countries' imports. According to the U.S. Trade Expansion Act Section 232, the American government imposed additional tariffs on steel and aluminum imports to WTO member countries such as China, India, and EU etc. on march 15, 2018. Thus, this study aims to investigate whether the U.S. Trade Expansion Act Section 232 is consistent with GATT/WTO rules by comparing the legal basis of US / China / WTO regulations related to Section 232 of the U.S. Trade Expansion Act, and gives some suggestions for responding to the Section 232 measure. As the Section 232 measure exceeded the scope of GATT's Security Exceptions regulation and is very likely to be understood as a safeguard measure. If so, the American government is deemed to be in breach of WTO's regulations, such as the most-favored-nation treatment obligations and the duty reduction obligations. In addition, American government is deemed to be failed to meet the conditions of initiation of safeguard measure and violated the procedural requirements such as notification and consultation. In order to respond to these U.S. protection trade measures, all affected countries should actively use the WTO multilateral system to prevent unfair measures. Also, it is necessary to revise the standard jurisdiction of the dispute settlement body and to explore the balance of the WTO Exception clause so that it can be applied strictly. Finally, it would be necessary for Chinese exporters to take a counter-strategy under such trade pressure.

Evaluation of Stress Distribution Ratio According to Clay Ground Condition and Stone Column Characteristics (점토지반 조건 및 쇄석말뚝 특성에 따른 응력분담비 산정)

  • Kim, Dong-Eun;Park, Hyun-Il;Lee, Seung-Rae;You, Sang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.35-41
    • /
    • 2008
  • Stone columns, one of the soft ground improvement techniques, are being used for not only accelerating consolidation but also increasing bearing capacity of soft grounds. In this study, in order to observe the stress distribution characteristics which are one of the important factors to estimate the settlement reduction of the soft ground, lab-scale experiments were performed in stone column reinforced clay ground. The stress distribution ratio of stone column decreased with the lapse of time after surcharge loading but increased as the stiffness of clay deposit increases. It shows that the modified Baumann and Bauer's solution, which is able to easily predict the stress distribution ratio of stone column reinforced soft ground, exhibits reasonable agreement with the measured data.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.