• Title/Summary/Keyword: settlement profile

Search Result 36, Processing Time 0.018 seconds

Occurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction

  • Kamagata, Shuichi;Takeqaki, Izuru
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.557-585
    • /
    • 2013
  • The recent huge earthquake ground motion records in Japan result in the reconsideration of seismic design forces for nuclear power stations from the view point of seismological research. In addition, the seismic design force should be defined also from the view point of structural engineering. In this paper it is shown that one of the occurrence mechanisms of such large acceleration in recent seismic records (recorded in or near massive structures and not free-field ground motions) is due to the interaction between a massive building and its surrounding soil which induces amplification of local mode in the surface soil. Furthermore on-site investigation after earthquakes in the nuclear power stations reveals some damages of soil around the building (cracks, settlement and sand boiling). The influence of plastic behavior of soil is investigated in the context of interaction between the structure and the surrounding soil. Moreover the amplification property of the surface soil is investigated from the seismic records of the Suruga-gulf earthquake in 2009 and the 2011 off the Pacific coast of Tohoku earthquake in 2011. Two methods are introduced for the analysis of the non-stationary process of ground motions. It is shown that the non-stationary Fourier spectra can detect the temporal change of frequency contents of ground motions and the displacement profile integrated from its acceleration profile is useful to evaluate the seismic behavior of the building and the surrounding soil.

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

Settlement Predictions for Pile Foundations (말뚝기초의 침하예측)

  • 윤길림
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.137-154
    • /
    • 1997
  • Piling engineers in limit state design should consider both capacity of a pile and settlements of pile for stability of a structure. This paper analyzes the prediction of the settlements of single piles and nine-group piles installed at an overconsolidated clay site by common prediction methods and cone penetrometer test data obtained closely at pile locations. The effects of Young's modulus, which varies spatially in soil profile, on estimating the set tlements of piles have been investigated briefly. The predicted settlements for single piles and nine-pile group by using simple linear elan tic methods, Vesic's method and Poulos's method, overestimated overalls the measured valroes, and the assumption of Youngs modulus, which are to be varied linearly through the soil layers. did not significantly affect the settlement predictions.

  • PDF

Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement

  • Yang, X.L.;Wang, H.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.621-630
    • /
    • 2018
  • In the note a comprehensive and optimal passive-active mode for describing the limit failure of circular shallow tunnel with settlement is put forward to predict the catastrophic stability during the geotechnical construction. Since the surrounding soil mass around tunnel roof is not homogeneous, with tools of variation calculus, several different curve functions which depict several failure shapes in different soil layers are obtained using virtual work formulae. By making reference to the simple-form of Power-law failure criteria based on numerous experiments, a numerical procedure with consideration of combination of upper bound theorem and stochastic medium theory is applied to the optimal analysis of shallow-buried tunnel failure. With help of functional catastrophe theory, this work presented a more accurate and optimal failure profile compared with previous work. Lastly the note discusses different effects of parameters in new yield rule and soil mechanical coefficients on failure mechanisms. The scope of failure block becomes smaller with increase of the parameter A and the range of failure soil mass tends to decrease with decrease of unit weight of the soil and tunnel radius, which verifies the geomechanics and practical case in engineering.

A Study on the Design of Bridge Foundation by Cast in Place Pile (현장타설말뚝에 의한 교량기초의 설계에 관한 연구)

  • Ahn, Jong-Pil;Yu, Deok-Cho;Lee, Jung-Ug;Lim, Jae-Choun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.767-774
    • /
    • 2008
  • The spot where bottom foundation of a marine bridge is constructed is deep in depth of water and a bedrock, bearing stratum, is very deeply distributed. So, I analyzed material of soil profile and then evaluate bearing capacity and safety of settlement when a stake of site construction is designed using a projection cast in place concrete pile and a sacrifice steel cast in place pile. Also, I analyzed and researched pratical affairs like a slime processing and plumbing maintenance in supervision of execution.

  • PDF

The behavior of high-speed rail roadbed reinforced by geogrid under cyclic loading (지오그리드로 보강한 고속철도 노반의 동적 거동)

  • 신은철;김두환;김종인
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.415-422
    • /
    • 1999
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. Five series of test were conducted with varying the soil profile conditions including the ground level, type of soil, and the thickness of each soil layer. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to know the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

Characteristics of Subsidence of a Road During the New Tubular Roof Construction Around a Shallow Tunnel (저심도 터널주변의 NTR보강 중 발생한 도로면 침하의 특성)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.620-634
    • /
    • 2018
  • The NTR(New Tubular Roof) method was used to secure the stability of the tunnel and minimize the subsidence of the road. The tunnel was constructed at about 7.5 meters deep below the highway. with a width of about 21 meters. Following the NTR method, 13 steel pipes with a diameter of 2.3 meters were digged and pushed in longitudinally along the tunnel profile and cut out sides of pipes to connect to adjacent pipes, then filled the inside of pipes and the connected space between pipes with concrete to complete the lining of the tunnel to be excavated. As the steel pipes were digged in sequentially, the area of relaxation was connected to each other and behaves like a gradually widening tunnel. When the steel pipes were digged in to the widest points of the tunnel, the settlement rate of the road surface was increasing to the maximum as 2.2 mm and the total settlement until the lining construction was approximately 7.7 mm. After that, by excavating a tunnel inside the pre-installed lining, an additional settlement of about 4.3 mm was occurred, resulting in the total settlement of about 11.8 mm after completing of tunnel construction.

Settlement of velocity dissemination with fluid parameters for the configuration of stretching cylinder

  • Jalil, Mudassar;Iqbal, Waheed;Hussain, Muzamal;Khadimallah, Mohamed A.;Alshoaibi, Adil;Baili, Jamel;Khedher, Khaled Mohamed;Ali, Elimam Abdallah;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.389-396
    • /
    • 2022
  • This investigation in fluid mechanics surrounds around the variety of flow problems for different fluids along the stretching cylinder. Numerical procedure is carried out for the obtained resultant equations by Keller-Box technique. Numerical study of laminar, steady, viscous and incompressible two dimensional boundary layer flow of effects of suction and blowing on boundary layer slip flow of Casson fluid along permeable exponentially stretching cylinder has been carried out in the present draft. physical parameters i.e., Nusselt number and skin friction coefficient, suction parameter and the local Reynold number are investigated on velocity profile and elaborated through proper graphs and table.

The Effects of Improvement in Clay with High Moisture Contents Using the Filter Type Vacuum Consolidation Method (필터형 진공압밀공법을 이용한 고함수비 점토지반의 개량효과)

  • Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.55-60
    • /
    • 2010
  • This study are carried out to an lab model tests to develop a construction method that solidifies high-water content cohesive soil by using filter type drain and vacuum pressure, and that stabilizes the ground by accelerating horizontal drain at incline or in tunnel. The calibration chamber was designed within length of 1.5m and height of 50cm, and a drainage hole for preconsolidation, a switchgear and a piezometer were installed at the bottom part of the chamber. Also, a settlement gage was installed at the top part so that it can measure the settlement by time. The calibration ground basis was made in a form of thin layer from kaolinite and bentonite in 9:1 ratio stirred at 130% water content condition. A filter type drain was installed at chamber center and a vacuum pressure of 0.8MPa was applied through a hose linked to the cap at the top part, then, the settlement was measured in every 1 hour interval. After experiment, the moisture contents were measured by position, then, verified the increase of solidity of the ground through a triaxial compression test on undisturbed profile. After 11 days from the effective date, it was observed that the settlement decreased by maximum 35mm and the water content ratio was reduced by 38% at most while the solidity of the ground increased by 5~8 times greater than before preconsolidation.