• Title/Summary/Keyword: settlement foundation

Search Result 457, Processing Time 0.021 seconds

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Numerical Analysis of Piled-Raft Foundations Considering the Effects of Sand Cushion (샌드쿠션을 고려한 말뚝지지 전면기초의 수치해석)

  • Kim, Nam-Ick;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.25-32
    • /
    • 2007
  • The piled-raft foundation, a new design concept, is one of the most effective kinds of foundation for reducing settlement of structures. An alternative piled-raft system with disconnection cap and a sand cushion between the pile and raft was also investigated to compare the influence of ultimate bearing capacity and settlement. Load-settlement relation curves were used to evaluate the ultimate bearing capacity. In the numerical analyses, a plane strain elasto-plastic finite element model (Mohr-Coulomb model) was used to present the response of the piled-raft foundation.

Reliability and Accuracy Analyses of Prediction Equations for Settlement Calculation of Shallow Foundations Constructed on Sandy Soils (사질토 지반에 시공된 얕은 기초 침하예측식의 신뢰도 및 정확도 분석)

  • Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.77-86
    • /
    • 2008
  • A database program is constructed by collecting all information related to shallow foundations such as measured load-settlement data, foundation shapes and sizes, properties of soils under the foundation and various measured data obtained from field investigation methods including CPT, PMT and SPT etc.. Based on the database program, a special program module is developed for performing statistical analyses of reliability and accuracy of predicting equations used for calculation of settlement of the shallow foundations. Special interests are focused not only on the settlement, but also on the settlement to width ratio (s/B). Results of the reliability and accuracy analyses on five available settlement equations are provided. Conclusions based on the provided results can be confirmed by extending number of related reliable data about the shallow foundations and can be adapted as guidelines for design of the shallow foundations.

Mechanical characteristics + differential settlement of CFG pile and cement-soil compacted pile about composite foundation under train load

  • Cheng, Xuansheng;Liu, Gongning;Gong, Lijun;Zhou, Xinhai;Shi, Baozhen
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • In recent years, the stability, safety and comfort of trains has received increased attention. The mechanical characteristics and differential settlement of the foundation are the main problems studied in high-speed railway research. The mechanical characteristics and differential settlement of the foundation are greatly affected by the ground treatment. Additionally, the effects of train load and earthquakes have a great impact. The dynamic action of the train will increase the vibration acceleration of the foundation and increase the cumulative deformation, and the earthquake action will affect the stability of the substructure. Earthquakes have an important practical significance for the dynamic analysis of the railway operation stage; therefore, considering the impact of earthquakes on the railway substructure stability has engineering significance. In this paper, finite element model of the CFG (Cement Fly-ash Gravel) pile + cement-soil compacted pile about composite foundation is established, and manual numerical incentive method is selected as the simulation principle. The mechanical characteristics and differential settlement of CFG pile + cement-soil compacted pile about composite foundation under train load are studied. The results show: under the train load, the neutral point of the side friction about CFG pile is located at nearly 7/8 of the pile length; the vertical dynamic stress-time history curves of the cement-soil compacted pile, CFG pile and soil between piles are all regular serrated shape, the vertical dynamic stress of CFG pile changes greatly, but the vertical dynamic stress of cement-soil compacted pile and soil between piles does not change much; the vertical displacement of CFG pile, cement-soil compacted pile and soil between piles change very little.

Observation and Analysis of the Acumulted Sit Foundation (하성퇴적층지반 조사결과)

  • 김주범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.4
    • /
    • pp.3611-3616
    • /
    • 1974
  • Alluvial plain of the coast of Kum river tail were found as being mostly consisted of weak foundation. The settlement of the ground, density and change of moisture content which were formed by the load due the construction of earth works were disclossed by the field investigations and laboratory tests. The results are as follow, 1) Banking materials are SM and soft soil stratum is CL. 2) Field moisture content; Wf=19-1.37c c; percentage of clay (less than 0.005mm) 3) optimum water content and maximum density of banking materials; rt=2.15$\mid$0.0165W(12%24%) 4) Density and moisture coutent of banking materials; rt=2.146-0.0095W (8%50%) 5) Density and moisture content of weak foundation; rt=2.06-0. 007W After construction (20%50%) Befor construction (40%60%) 6) Load and settlement of weak foundation; Everage settlement ratio; 12% of actual load p Maximum settlement ratio; 19% of actual load p Minimum settlement ratio: 5% of actual load p 7) Relation of cohesion and unconfined compression test value; c=1/2qu (qu<0.5kg/$\textrm{cm}^2$) c=1/3qu (qu<0.5kg/$\textrm{cm}^2$)

  • PDF

Development of Analytical Method of Piled-Raft Foundation Considering Nonlinear Behavior of Pile (말뚝의 비선형거동이 고려된 전면지지 말뚝기초 해석기법의 개발)

  • Park, Hyun-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.17-24
    • /
    • 2008
  • In this study, two-dimensional finite element method has been developed to simply consider the nonlinear load-settlement behavior of piled raft foundation subjected to vertical loads. The raft is modeled as the plate finite element based on Mindline's theory and the pile is modeled as the proposed simple pile model that is easy to consider the complex nonlinear load-settlement behavior between pile and soil. The developed numerical method has been compared with the settlement data of lab-scaled experiment and numerical solutions to verify that the developed numerical method shows satisfactory prediction for the nonlinear load-settlement of piled raft foundation.

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

A Study of sea Dike meterials loss due to Scouring and Consolidation Settlement During the Periond of Construction on Construction on the West Cost of Korea (서해암 방조제 공사 기간중 유실토량 측정시험)

  • 안재숙
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.1
    • /
    • pp.2503-2519
    • /
    • 1972
  • The studies were carried out to find the cause and the quantitative evaluation of sea dike materials loss which is occured during the period of construction works for the tideland reclamation projects on the west coast of Korea. Major subjects to studies were to establish the typical relationships between the tidal flow and the movement of dike materials, the tidal-flow and the erosion, the dike materials and the ratio of material movement(losses), construction methods and the ratio of materials movement (losses). Based on the above subjects, the studies were made for the purpose of obtain the following informations; (1) Collecting and evaluaing the data of dike material losses due to foundation settlement, from designed existing dikes on the west coast. (2) By the field investigation at A-San Sea Dike, Pyong Taek Project, the Comparison would be made by the relationships between the tide velocity and the movement of dike foundation under the natural conditions and the period of construction so that find out the relationship between the dike materials of foundation situation and settlements. With regard to the dike construction works, it is so difficult to calculate the exact quantity of material losses due to the foundation settlements. The major factors that affect the settlement losses of the dike materials are: (1) Topographical variation (2) Swepting the sectional area of dike by the tide velocity. (3) Dumping riprap to the outerside of dike during the period of construction works. (4) Sectional area losses by the cause of occurence of the new tide channels. (5) material losses by the heavy storms. (6) Consolidation settlement by the foundation weakness. (7) Material losses by the earth materials by tide flow. Most hi호 material losses were occured by the Consolidation settlement due to the foundation weakness, the maximum tide velocities due to decrease the cross sectional area of the gaps and erosion of foundation due to the range of tide, Inner and outerside of dike, or dike material loses due to the tide flow. Final conclusion would be obtained by the continuous measurement of consolidation settlement at the stage of final clusure of the dike. (It is scheduled to close on the end of 1972) However, intermediate conclusion can be introduced as follows: (1) The estimation of material(losses) during the period of construction works for the existing sea-dikes up to date were only empirical. The material losses at the general closure for design was estimated at 10% of the riprap, 20% of the earth materials, and 20% of the riprap, 40% of the earth materials at the final closure of the dike. The final closure estimated double quantity to the general closure, but it is still doubt. (2) The ratio of consolidation settlements was found smaller than the calculated quantity. It can be foreseen that settlement speeds is higher thom the calculated speeds. (3) The movement of dike foundation under the natural conditions were not so depends on the geological conditions of the foundation. (4) When the tide velocities was estimated 100 at the normal tide, it was estimated 125 at the high tide and 55 at the low tide. The tide velocities at the low tide shows apparently lower than the high tide and the higher velocities at the deep water depth.

  • PDF

Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline

  • Wang, Tao;Zhou, Guoqing;Wang, Jianzhou;Wang, Di
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • The spatial variability of geotechnical properties can lead to the uncertainty of settlement for frozen soil foundation around the oil pipeline, and it can affect the stability of permafrost foundation. In this paper, the elastic modulus, cohesion, angle of internal friction and poisson ratio are taken as four independent random fields. A stochastic analysis model for the uncertain settlement characteristic of frozen soil foundation around an oil pipeline is presented. The accuracy of the stochastic analysis model is verified by measured data. Considering the different combinations for the coefficient of variation and scale of fluctuation, the influences of spatial variability of geotechnical properties on uncertain settlement are estimated. The results show that the stochastic effects between elastic modulus, cohesion, angle of internal friction and poisson ratio are obviously different. The deformation parameters have a greater influence on stochastic settlement than the strength parameters. The overall variability of settlement reduces with the increase of horizontal scale of fluctuation and vertical scale of fluctuation. These results can improve our understanding of the influences of spatial variability of geotechnical properties on uncertain settlement and provide a theoretical basis for the reliability analysis of pipeline engineering in permafrost regions.

Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM

  • Kamol Amornfa;Ha T. Quang;Tran V. Tuan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.387-396
    • /
    • 2023
  • Ground subsidence, which is a current concern that affects piled raft foundations, has occurred at a high rate in Ho Chi Minh City, Viet Nam, due primarily to groundwater pumping for water supply. In this study, the groundwater level (GWL) change affect on a piled raft foundation was investigated based on the three-dimensional finite element method (3D-FEM) using the PLAXIS 3D software. The GWL change due to global groundwater pumping and dewatering were simulated in PLAXIS 3D based on the GWL reduction and consolidation. Settlement and the pile axial force of the piled raft foundation in Ho Chi Minh subsoil were investigated based on the actual design and the proposed optimal case. The actual design used the piled foundation concept, while the optimal case applied a pile spacing of 6D using a piled raft concept to reduce the number of piles, with little increased settlement. The results indicated that the settlement increased with the GWL reduction, caused by groundwater pumping and dewatering. The subsidence started to affect the piled raft foundation 2.5 years after construction for the actual design and after 3.4 years for the optimal case due to global groundwater pumping. The pile's axial force, which was affected by negative skin friction, increased during that time.