DOI QR코드

DOI QR Code

Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline

  • Wang, Tao (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Zhou, Guoqing (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Wang, Jianzhou (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Wang, Di (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • Received : 2019.01.10
  • Accepted : 2019.12.26
  • Published : 2020.01.10

Abstract

The spatial variability of geotechnical properties can lead to the uncertainty of settlement for frozen soil foundation around the oil pipeline, and it can affect the stability of permafrost foundation. In this paper, the elastic modulus, cohesion, angle of internal friction and poisson ratio are taken as four independent random fields. A stochastic analysis model for the uncertain settlement characteristic of frozen soil foundation around an oil pipeline is presented. The accuracy of the stochastic analysis model is verified by measured data. Considering the different combinations for the coefficient of variation and scale of fluctuation, the influences of spatial variability of geotechnical properties on uncertain settlement are estimated. The results show that the stochastic effects between elastic modulus, cohesion, angle of internal friction and poisson ratio are obviously different. The deformation parameters have a greater influence on stochastic settlement than the strength parameters. The overall variability of settlement reduces with the increase of horizontal scale of fluctuation and vertical scale of fluctuation. These results can improve our understanding of the influences of spatial variability of geotechnical properties on uncertain settlement and provide a theoretical basis for the reliability analysis of pipeline engineering in permafrost regions.

Keywords

Acknowledgement

Supported by : Central Universities

The authors wish to express their thanks to the very competent Reviewers for the valuable comments and suggestions. This research was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XKQYMS26).

References

  1. Alhasan, A., Ali, A., Offenbacker, D., Smadi, O. and Lewis-Beck, C. (2018), "Incorporating spatial variability of pavement foundation layers stiffness in reliability-based mechanistic-empirical pavement performance prediction", Transport. Geotech., 17(PartA), 1-13. https://doi.org/10.1016/j.trgeo. 2018.08.001.
  2. Attia, M.A., Eltaher, M.A., Soliman, A., Abdelrahman, A.A. and Alshorbagy, A.E. (2018), "Thermoelastic crack analysis in functionally graded pipelines conveying natural gas by an FEM", Int. J. Appl. Mech., 10(04), 1850036. https://doi.org/10.1142/S1758825118500369.
  3. Bai, T., Hu, X. and Gu, F. (2018), "Practice of searching a noncircular critical slip surface in a slope with soil variability", Int. J. Geomech., 19(3), 04018199. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001350.
  4. Bose, T. and Rattan, M. (2018), "Modeling creep analysis of thermally graded anisotropic rotating composite disc", Int. J. Appl. Mech., 10(06), 1850063. https://doi.org/10.1142/S1758825118500631.
  5. Chen, Q.L. (2007), "Engineering geological research on the permafrost in high latitude area and its impact on pipeline construction", Ph.D. Thesis, Chinese Academy of Geologecal Sciences, Beijing, China (in Chinese).
  6. Chenari, R.J., Fatahi, B., Ghoreishi, M. and Taleb, A.(2019), "Physical and numerical modelling of the inherent variability of shear strength in soil mechanics", Geomech. Eng., 17(1), 31-45. http://doi.org/10.12989/gae.2019.17.1.031.
  7. Cheng, H., Chen, J. and Li, J. (2019), "Probabilistic analysis of ground movements caused by tunneling in a spatially variable soil", Int. J. Geomech., 19(12), 04019125. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001526.
  8. Cheng, H., Chen, J., Chen, R. and Chen, G. (2018), "Comparison of modeling soil parameters using random variables and random fields in reliability analysis of tunnel face", Int. J. Geomech., 19(1), 04018184. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001330.
  9. Cherniavsky, A. (2018), "Ratcheting analysis of "pipe-freezing soil" interaction", Cold Reg. Sci. Technol., 153, 97-100. https://doi.org/10.1016/j.coldregions.2018.05.005.
  10. Davis, R.O. and Selvadurai, A.P.S. (2002), Plasticity and Geotechnics, Cambridge University Press.
  11. Fatehi, M.R., Ghanbarzadeh, A., Moradi, S. and Hajnayeb, A. (2018), "Determination of random matrices dispersion parameters for nonparametric modeling of stochastic dynamic systems with experimental verification", Int. J. Appl. Mech., 10(09), 1850101. https://doi.org/10.1142/S17 58825118501016.
  12. Fei, S., Tan, X., Wang, X., Du, L. and Sun, Z. (2019), "Evaluation of soil spatial variability by micro-structure simulation", Geomech. Eng., 17(6), 565-572. https://doi.org/10.12989/gae.2019.17.6.565.
  13. Ghiasi, V., and Moradi, M. (2018), "Assessment the effect of pile intervals on settlement and bending moment raft analysis of piled raft foundations", Geomech. Eng., 16(2), 187-194. https://doi.org/10.12989/gae.2018.16.2.187.
  14. Golpasand, M.R.B., Do, N.A. and Dias, D. (2019), "Impact of pre-existent Qanats on ground settlements due to mechanized tunneling", Transport., Geotech., 21, 100262. https://doi.org/10.1016/j.trgeo. 2019.100262.
  15. Hazirbaba, K. (2019), "Effects of freeze-thaw on settlement of fine grained soil subjected to cyclic loading", Cold Reg. Sci. Technol., 160, 222-229. https://doi.org/10.1016/j.coldregions.2019.02.008.
  16. Jiang, H., Li, X., Xin, G., Yao, Z., Zhang, J. and Liang, M. (2019), "Geometry mapping and additional stresses of ballastless track structure caused by subgrade differential settlement under self-weight loads in high-speed railways", Transport., Geotech., 18, 103-110. https://doi.org/10.1016/j.trgeo.2018.10.007.
  17. Kadivar, M., and Manahiloh, K.N. (2019), "Revisiting parameters that dictate the mechanical behavior of frozen soils", Cold Reg. Sci. Technol., 163, 34-43 https://doi.org/10.1016/j.coldregions.2019.04.005.
  18. Kemp, J.E., Davies, E.G. and Loewen, M.R. (2019), "Spatial variability of ice thickness on stormwater retention ponds", Cold Reg. Sci. Technol., 159, 106-122. https://doi.org/10.1016/j.coldregions.2018.12.010.
  19. Khanmohammadi, M. and Fakharian, K. (2018), "Evaluation of performance of piled-raft foundations on soft clay: A case study", Geomech. Eng., 14(1), 43-50. https://doi.org/10.12989/gae.2018.14.1.043.
  20. Lai, Y.M., Li, J.B. and Li, Q.Z. (2012), "Study on damage statistical constitutive model and stochastic simulation for warm ice-rich frozen silt", Cold Reg. Sci. Technol., 71(2), 102-110. https://doi.org/10.1016/j.coldregions.2011.11.001.
  21. Lai, Y.M., Li, S.Y., Qi, J.L., Gao, Z.H. and Chang, X.X. (2008), "Strength distributions of warm frozen clay and its stochastic damage constitutive model", Cold Reg. Sci. Technol., 53(2), 200-215. https://doi.org/10.1016/j.coldregions.2007.11.001.
  22. Li, H., Lai, Y., Wang, L., Yang, X., Jiang, N., Li, L. and Yang, B. (2019), "Review of the state of the art: interactions between a buried pipeline and frozen soil", Cold Reg. Sci. Technol., 157, 171-186. https://doi.org/10.1016/j.coldregions.2018.10.014.
  23. Li, S.Y. (2008), "Numerical Study on the Thermal-mechanical Stability of Railway Subgrade in Permafrost Regions", Ph.D. Thesis, Graduate University of the Chinese Academy of Sciences, Lanzhou, China (in Chinese).
  24. Li, S.Y., Lai, Y.M., Zhang, M.Y. and Dong, Y.H. (2009), "Study on long-term stability of Qinghai-Tibet Railway embankment", Cold Reg. Sci. Technol., 57(2-3), 139-147. https://doi.org/10.1016/j.coldregions.2009.02.003.
  25. Liu, H., Maghoul, P., Shalaby, A. and Bahari, A. (2019), "Thermo-hydro-mechanical modeling of frost heave using the theory of poroelasticity for frost-susceptible soils in double-barrel culvert sites", Transport. Geotech., 20, 100251. https://doi.org/10.1016/j.trgeo.2019.100251.
  26. Liu, X.Q., Liu, J.K., Tian, Y.H., Chang, D. and Hu, T.F. (2019), "Influence of the freeze-thaw effect on the Duncan-Chang model parameter for lean clay", Transport. Geotech., 21, 100273. https://doi.org/10.1016/j.trgeo.2019.100273.
  27. Liu, Z.Q., Yang, W.H. and Wei, J. (2014), "Analysis of random temperature field for freeway with wide subgrade in cold regions", Cold Reg. Sci. Technol., 106-107,22-27. https://doi.org/10.1016/j.coldregions.2014.06.004.
  28. Lombardi, M., Cardarilli, M. and Raspa, G. (2017), "Spatial variability analysis of soil strength to slope stability assessment", Geomech. Eng., 12(3), 483-503. http://doi.org/10.12989/gae.2017.12.3.483.
  29. Ma, X.F. and Li, T.J. (2018), "Dynamic analysis of uncertain structures using an interval-wave approach", Int. J. Appl. Mech., 10(02), 1850021. https://doi.org/10.1142/S1758825118500 217.
  30. Ming, F., Yu, Q.H. and Li, D.Q. (2018), "Investigation of embankment deformation mechanisms in permafrost regions", Transport. Geotech., 16, 21-28. https://doi.org/10.1016/j.trgeo.2018.06.003.
  31. Moeinossadat, S.R. and Ahangari, K. (2019), "Estimating maximum surface settlement due to EPBM tunneling by Numerical-Intelligent approach-A case study: Tehran subway line 7", Transport. Geotech., 18, 92-102. https://doi.org/10.1016/j.trgeo.2018.11.009.
  32. Pan, Y.T., Liu, Y., Lee, F.H. and Phoon, K.K. (2019), "Analysis of cement-treated soil slab for deep excavation support-A rational approach", Geotechnique, 69(10),888-905. http://doi.org/10.1680/jgeot.18.P.002.
  33. Pan, Y.T., Liu, Y., Xiao, H.W., Lee, F.H. and Phoon, K.K. (2018a), "Effect of spatial variability on short-and long-term behaviour of axially-loaded cement-admixed marine clay column", Comput. Geotech., 94, 150-168. http://doi.org/10.1016/j.compgeo.2017.09.006.
  34. Pan, Y.T., Shi, G.C., Liu, Y. and Lee, F.H. (2018b), "Effect of spatial variability on performance of cement-treated soil slab during deep excavation", Construct. Build. Mater., 188, 505-519. http://doi.org/10.1016/j.conbuildmat.2018.08.112.
  35. Peduto, D., Elia, F. and Montuori, R. (2018), "Probabilistic analysis of settlement-induced damage to bridges in the city of Amsterdam (The Netherlands)", Transport. Geotech., 14, 169-182. https://doi.org/10.1016/j.trgeo.2018.01.002.
  36. Pramanik, R., Baidya, D.K. and Dhang, N. (2019), "Implementation of fuzzy reliability analysis for elastic settlement of strip footing on sand considering spatial variability", Int. J. Geomech., 19(12), 04019126. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001514.
  37. Ren, J. and Vanapalli, S.K. (2018), "Empirical model for predicting the resilient modulus of frozen unbound road materials using a hyperbolic function", Transport. Geotech., 17, 66-74. https://doi.org/10.1016/j.trgeo.2018.09.011.
  38. Shakir, M. and Talha, M. (2019), "On the dynamic response of imperfection sensitive higher order functionally graded plates with random system parameters", Int. J. Appl. Mech., 11(03), 1950025. https://doi.org/10.1142/S175882511950025X.
  39. Titi, H.H., Tabatabai, H., Faheem, A., Tutumluer, E. and Peters, J.P. (2018), "Spatial variability of compacted aggregate bases", Transport. Geotech., 17(PartB), 56-65. https://doi.org/10.1016/j.trgeo.2018.06.007.
  40. Vanmarcke, E. (2010), Random Fields: Analysis And Synthesis. MIT Press, Cambridge, U.K.
  41. Wang, C., Zhou, S., Wang, B. and Guo, P. (2018), "Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments", Geomech. Eng., 16(6), 589-597. https://doi.org/10.12989/gae.2018.16.6.589.
  42. Wang, F., Li, G., Ma, W., Mu, Y., Zhou, Z. and Mao, Y. (2018), "Permafrost thawing along the China-Russia Crude Oil Pipeline and countermeasures: A case study in Jiagedaqi, Northeast China", Cold Reg. Sci. Technol., 155, 308-313. https://doi.org/10.1016/j.coldregions.2018.08.018.
  43. Wang, S.H., Wang, Q.Z., An, P., Yang, Y.G., Qi, J.L. and Liu, F.Y.(2019b), "Optimization of hydraulic section of irrigation canals in cold regions based on a practical model for frost heave", Geomech. Eng., 17(2), 133-143. http://doi.org/10.12989/gae.2019.17.2.133.
  44. Wang, S.H., Wang, Q.Z., Qi, J.L. and Liu, F.Y. (2018), "Experimental study on freezing point of saline soft clay after freeze-thaw cycling", Geomech. Eng., 15(4), 997-1004. http://doi.org/10.12989/gae.2018.15.4.997.
  45. Wang, S.H., Wang, Q.Z., Xu, J., Ding, J.L., Qi, J.L., Yang, Y.G. and Liu, F.Y. (2019a), "Thaw consolidation behavior of frozen soft clay with calcium chloride", Geomech. Eng., 18(2),189-203. http://doi.org/10.12989/gae.2019.18.2.189.
  46. Wang, T. (2015), "Study on the analysis model of stochastic temperature fields and displacement fields in permafrost regions", Ph. D. Dissertation, China University of Mining and Technology, Xuzhou, China.
  47. Wang, T., Zhou, G., Wang, J. and Yin, L. (2018a), "Stochastic thermal-mechanical characteristics of frozen soil foundation for a transmission line tower in permafrost regions", Int. J. Geomech., 18(3), 06017025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001087.
  48. Wang, T., Zhou, G., Wang, J., Zhao, X. and Yin, L. (2018b), "Stochastic analysis for uncertain deformation of foundations in permafrost regions", Geomech. Eng., 14(6), 589-600. https://doi.org/10.12989/gae.2018.14.6.589.
  49. Wang, T., Zhou, G., Wang, J., Zhou, Y. and Chen, T. (2019b), "Stochastic coupling analysis of uncertain hydro-thermal properties for embankment in cold regions", Transport. Geotech., 21, 100275. https://doi.org/10.1016/j.trgeo.2019.100275.
  50. Wang, T., Zhou, G., Yin, L. and Zhou, L. (2019a), "Estimation on the influence of seepage on stochastic thermal regime of frozen ground surrounding the crude oil pipeline", Cold Reg. Sci. Technol., 157, 13-20. https://doi.org/10.1016/j.coldregions.2018.09.007.
  51. Wang, T., Zhou, G.Q., Wang, J.Z. and Zhao, X.D. (2016), "Stochastic analysis of uncertain thermal characteristic of foundation soils surrounding the crude oil pipeline in permafrost regions", Appl. Therm. Eng., 99, 591-598. https://doi.org/10.1016/j.applthermaleng.2016.01.099.
  52. Wen, Z., Sheng, Y., Jin, H., Li, S., Li, G. and Niu, Y. (2010), "Thermal elasto-plastic computation model for a buried oil pipeline in frozen ground", Cold Reg. Sci. Technol., 64(3), 248-255. https://doi.org/10.1016/j.coldregions.2010.01.009.
  53. Wijerathna, M. and Liyanapathirana, D.S. (2019), "Significance of spatial variability of deep cement mixed columns on reliability of column-supported embankments", Int. J. Geomech., 19(8), 04019087. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001473.
  54. Wu, Y., Sheng, Y., Wang, Y., Jin, H.J. and Chen, W. (2010), "Stresses and deformations in a buried oil pipeline subject to differential frost heave in permafrost regions", Cold Reg. Sci. Technol., 64(3), 256-261. https://doi.org/10.1016/j.coldregions.2010.07.004.
  55. Wu, Z., Zhang, D., Zhao, T., Ma, J. and Zhao, D. (2019), "An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the Qinghai-Tibet engineering corridor", Transport. Geotech., 21, 100269. https://doi.org/10.1016/j.trgeo.2019.100269.
  56. Wu, Z.W., Cheng, G.D., Zhu, L.N. and Liu, Y.Z. (1988), Roadbed Engineering in Permafrost Region. Lanzhou University Press, Lanzhou, China (In Chinese).
  57. Yang, R., Ma, T., Liu, W., Fang, Y. and Xing, L. (2019), "Coupled hydro-mechanical analysis of gas production in fractured shale reservoir by random fracture network modeling", Int. J. Appl. Mech., 11(03), 1950031. https://doi.org/10.1142/S1758825119500315.
  58. Yao, K., Xiao, H., Chen, D.H. and Liu, Y. (2019), "A direct assessment for the stiffness development of artificially cemented clay", Geotechnique, 69(8), 741-747. https://doi.org/10.1680/jgeot.18.t.010.
  59. Yu, W.B., Liu, W.B., Lai, Y.M., Chen, L. and Yi, X. (2014), "Nonlinear analysis of coupled temperature- seepage problem of warm oil pipe in permafrost regions of northeast China", Appl. Therm. Eng., 70(1), 988-995. https://doi.org/10.1016/j.applthermaleng.2014.06.028.
  60. Zhang, Y., Cheng, Z. and Lv, H. (2019), "Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions", Geomech. Eng., 18(1), 97-109. https://doi.org/10.12989/gae.2019.18.1.097.
  61. Zhang, Z., Tian, J., Huang, X. and Hua, H. (2018), "Stochastic response analysis of a built-up vibro-acoustic system with parameter uncertainties", Int. J. Appl. Mech., 10(08), 1850084. https://doi.org/10.1142/S1758825118500849.
  62. Zheng P. (2011), "Numerical simulation for couplings of water, temperature and stress fields of underground oil pipeline in cold region", Ph.D. Thesis, China University of Petroleum, Qingdao, China (in Chinese).
  63. Zheng, J.J., Liu, Y., Pan, Y.T. and Hu, J. (2018), "Statistical evaluation of the load-settlement response of a multicolumn composite foundation", Int. J. Geomech., 18(4), 04018015-1. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001124.
  64. Zheng, Y.R., Sheng, Z.J. and Gong, X.N. (2002), Generalized Plastic Mechanics-The Principles of Geotechnical Plastic Mechanics, China Architecture and Building, Beijing, China (in Chinese).
  65. Zhou, Z., Yang, H., Xing, K. and Gao, W.Y. (2018), "Prediction models of the shear modulus of normal or frozen soil-rock mixtures", Geomech. Eng., 15(2), 775-781. http://doi.org/10.12989/gae.2018.15.2.783.
  66. Zhu, H. and Zhang, L.M. (2013), "Characterizing geotechnical anisotropic spatial variations using random field theory", Can. Geotech. J., 50(7), 723-734. https://doi.org/10.1139/cgj-2012-0345.
  67. Zhu, H., Zhang, L.M., Xiao, T. and Li, X.Y. (2017), "Generation of multivariate cross-correlated geotechnical random fields", Comput. Geotech., 86, 95-107. https://doi.org/10.1016/j.compgeo. 2017.01.006.