• Title/Summary/Keyword: set of idempotents

Search Result 16, Processing Time 0.022 seconds

Quasi-reversibility of the Ring of 2 × 2 Matrices over an Arbitrary Field

  • Heidari, Dariush;Davvaz, Bijan
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.71-72
    • /
    • 2020
  • A ring R is quasi-reversible if 0 ≠ ab ∈ I(R) for a, b ∈ R implies ba ∈ I(R), where I(R) is the set of all idempotents in R. In this short paper, we prove that the ring of 2×2 matrices over an arbitrary field is quasi-reversible, which is an answer to the question given by Da Woon Jung et al. in [Bull. Korean Math. Soc., 56(4) (2019) 993-1006].

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

THE STRUCTURE OF ALMOST REGULAR SEMIGROUPS

  • Chae, Younki;Lim, Yongdo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.187-192
    • /
    • 1994
  • The author extended the small properties of topological semilattices to that of regular semigroups [3]. In this paper, it could be shown that a semigroup S is almost regular if and only if over bar RL = over bar R.cap.L for every right ideal R and every left ideal L of S. Moreover, it has shown that the Bohr compactification of an almost regular semigroup is regular. Throughout, a semigroup will mean a topological semigroup which is a Hausdorff space together with a continuous associative multiplication. For a semigroup S, we denote E(S) by the set of all idempotents of S. An element x of a semigroup S is called regular if and only if x .mem. xSx. A semigroup S is termed regular if every element of S is regular. If x .mem. S is regular, then there exists an element y .mem S such that x xyx and y = yxy (y is called an inverse of x) If y is an inverse of x, then xy and yx are both idempotents but are not always equal. A semigroup S is termed recurrent( or almost pointwise periodic) at x .mem. S if and only if for any open set U about x, there is an integer p > 1 such that x$^{p}$ .mem.U.S is said to be recurrent (or almost periodic) if and only if S is recurrent at every x .mem. S. It is known that if x .mem. S is recurrent and .GAMMA.(x)=over bar {x,x$^{2}$,..,} is compact, then .GAMMA.(x) is a subgroup of S and hence x is a regular element of S.

  • PDF

ON THE LEET INVERSIVE SEMIRING CONGRUENCES ON ADDITIVB REGULAR SEMIRINGS

  • SEN M. K.;BHUNIYA A. K.
    • The Pure and Applied Mathematics
    • /
    • v.12 no.4 s.30
    • /
    • pp.253-274
    • /
    • 2005
  • An additive regular Semiring S is left inversive if the Set E+ (S) of all additive idempotents is left regular. The set LC(S) of all left inversive semiring congruences on an additive regular semiring S is a lattice. The relations $\theta$ and k (resp.), induced by tr. and ker (resp.), are congruences on LC(S) and each $\theta$-class p$\theta$ (resp. each k-class pk) is a complete modular sublattice with $p_{min}$ and $p_{max}$ (resp. With $p^{min}$ and $p^{max}$), as the least and greatest elements. $p_{min},\;p_{max},\;p^{min}$ and $p^{max}$, in particular ${\epsilon}_{max}$, the maximum additive idempotent separating congruence has been characterized explicitly. A semiring is quasi-inversive if and only if it is a subdirect product of a left inversive and a right inversive semiring.

  • PDF

LEFT QUASI-ABUNDANT SEMIGROUPS

  • Ji, Zhulin;Ren, Xueming;Wang, Yanhui
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1159-1172
    • /
    • 2019
  • A semigroup S is called a weakly abundant semigroup if its every $\tilde{\mathcal{L}}$-class and every $\tilde{\mathcal{R}}$-class contains an idempotent. Our purpose is to study an analogue of orthodox semigroups in the class of weakly abundant semigroups. Such an analogue is called a left quasi-abundant semigroup, which is a weakly abundant semigroup with a left quasi-normal band of idempotents and having the congruence condition (C). To build our main structure theorem for left quasi-abundant semigroups, we first give a sufficient and necessary condition of the idempotent set E(S) of a weakly abundant semigroup S being a left quasi-normal band. And then we construct a left quasi-abundant semigroup in terms of weak spined products. Such a result is a generalisation of that of Guo and Shum for left semi-perfect abundant semigroups. In addition, we consider a type Q semigroup which is a left quasi-abundant semigroup having the PC condition.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.