• Title/Summary/Keyword: set covering

Search Result 247, Processing Time 0.029 seconds

A Heuristic Algorithm for Crew Scheduling Problems (발견적 승무계획 해법의 연구)

  • 김정식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.13
    • /
    • pp.79-86
    • /
    • 1986
  • This paper presents a heuristic algorithm for a crew scheduling problem with dead head flights. This paper modifies and improves saving method for finding the Multiple Salesman tours in the graph. The results show that the computing time from this algorithm is implemented very much than those from general crew scheduling algorithms by set covering models.

  • PDF

Design of a Technology Mapping System for Logic Circuits (논리 회로의 기술 매핑 시스템 설계)

  • 김태선;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.88-99
    • /
    • 1992
  • This paper presents an efficient method of mapping Boolean equations to a set of library gates. The proposed system performs technology mapping by graph covering. To select optimal area cover, a new cost function and local area optimization are proposed. Experimental results show that the proposed algorithm produces effective mapping using given library.

  • PDF

Optimization-Based Pattern Generation for LAD (최적화에 기반을 둔 LAD의 패턴 생성 기법)

  • Jang, In-Yong;Ryoo, Hong-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.11-18
    • /
    • 2006
  • The logical analysis of data(LAD) is a Boolean-logic based data mining tool. A critical step in analyzing data by LAD is the pattern generation stage where useful knowledge and hidden structural information in data is discovered in the form of patterns. A conventional method for pattern generation in LAD is based on term enumeration that renders the generation of higher degree patterns practically impossible. In this paper, we present a novel optimization-based pattern generation methodology and propose two mathematical programming models, a mixed 0-1 integer and linear programming (MILP) formulation and a well-studied set covering problem (SCP) formulation for the generation of optimal and heuristic patterns, respectively. With benchmark datasets, we demonstrate the effectiveness of our models by automatically generating with ease patterns of high complexity that cannot be generated with the conventional approach.

  • PDF

An Efficient Coverage Algorithm for Intelligent Robots with Deadline (데드라인을 고려하는 효율적인 지능형 로봇 커버리지 알고리즘)

  • Jeon, Heung-Seok;Jung, Eun-Jin;Kang, Hyun-Kyu;Noh, Sam-H.
    • The KIPS Transactions:PartA
    • /
    • v.16A no.1
    • /
    • pp.35-42
    • /
    • 2009
  • This paper proposes a new coverage algorithm for intelligent robot. Many algorithms for improving the performance of coverage have been focused on minimizing the total coverage completion time. However, if one does not have enough time to finish the whole coverage, the optimal path could be different. To tackle this problem, we propose a new coverage algorithm, which we call MaxCoverage algorithm, for covering maximal area within the deadline. The MaxCoverage algorithm decides the navigation flow by greedy algorithm for Set Covering Problem. The experimental results show that the MaxCoverage algorithm performs better than other algorithms for random deadlines.

DOMINATION IN GRAPHS OF MINIMUM DEGREE FOUR

  • Sohn, Moo-Young;Xudong, Yuan
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.759-773
    • /
    • 2009
  • A dominating set for a graph G is a set D of vertices of G such that every vertex of G not in D is adjacent to a vertex of D. Reed [11] considered the domination problem for graphs with minimum degree at least three. He showed that any graph G of minimum degree at least three contains a dominating set D of size at most $\frac{3}{8}$ |V (G)| by introducing a covering by vertex disjoint paths. In this paper, by using this technique, we show that every graph on n vertices of minimum degree at least four contains a dominating set D of size at most $\frac{4}{11}$ |V (G)|.

COVERING AND INTERSECTION CONDITIONS FOR PRIME IDEALS

  • Chang, Gyu Whan;Hwang, Chul Ju
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Let D be an integral domain, P be a nonzero prime ideal of D, $\{P_{\alpha}{\mid}{\alpha}{\in}{\mathcal{A}}\}$ be a nonempty set of prime ideals of D, and $\{I_{\beta}{\mid}{\beta}{\in}{\mathcal{B}}\}$ be a nonempty family of ideals of D with ${\cap}_{{\beta}{\in}{\mathcal{B}}}I_{\beta}{\neq}(0)$. Consider the following conditions: (i) If $P{\subseteq}{\cup}_{{\alpha}{\in}{\mathcal{A}}}P_{\alpha}$, then $P=P_{\alpha}$ for some ${\alpha}{\in}{\mathcal{A}}$; (ii) If ${\cap}_{{\beta}{\in}{\mathcal{B}}}I_{\beta}{\subseteq}P$, then $I_{\beta}{\subseteq}P$ for some ${\beta}{\in}{\mathcal{B}}$. In this paper, we prove that D satisfies $(i){\Leftrightarrow}D$ is a generalized weakly factorial domain of ${\dim}(D)=1{\Rightarrow}D$ satisfies $(ii){\Leftrightarrow}D$ is a weakly Krull domain of dim(D) = 1. We also study the t-operation analogs of (i) and (ii).

  • PDF

Kernel Inference on the Inverse Weibull Distribution

  • Maswadah, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.503-512
    • /
    • 2006
  • In this paper, the Inverse Weibull distribution parameters have been estimated using a new estimation technique based on the non-parametric kernel density function that introduced as an alternative and reliable technique for estimation in life testing models. This technique will require bootstrapping from a set of sample observations for constructing the density functions of pivotal quantities and thus the confidence intervals for the distribution parameters. The performances of this technique have been studied comparing to the conditional inference on the basis of the mean lengths and the covering percentage of the confidence intervals, via Monte Carlo simulations. The simulation results indicated the robustness of the proposed method that yield reasonably accurate inferences even with fewer bootstrap replications and it is easy to be used than the conditional approach. Finally, a numerical example is given to illustrate the densities and the inferential methods developed in this paper.

A Method for Minimizing the Number of Internal States in Incompletely Specified Sequential Networks (불완전하게 규제된 순서회로의 내부상태의 간단화방법)

  • 고경식
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.4 no.3
    • /
    • pp.2-8
    • /
    • 1967
  • A method is illustrated for minimizing the number of internal states in incompletely specified sequential networks. The starting point for minimizing technique in this paper is the set of maximal compatibility classes which covers the original flow table and the minimal covering can be obtained directly by employing three rules. The reduction techniques for prime implicant table or covering and closure table are not employed in this paper. Although the minimizing technique is applied to some specific problems, it is believed that the concepts are general in nature and can be applied to any type of incompletely specified flow tables.

  • PDF