COVERING AND INTERSECTION CONDITIONS FOR PRIME IDEALS

  • Received : 2008.12.30
  • Published : 2009.03.30

Abstract

Let D be an integral domain, P be a nonzero prime ideal of D, $\{P_{\alpha}{\mid}{\alpha}{\in}{\mathcal{A}}\}$ be a nonempty set of prime ideals of D, and $\{I_{\beta}{\mid}{\beta}{\in}{\mathcal{B}}\}$ be a nonempty family of ideals of D with ${\cap}_{{\beta}{\in}{\mathcal{B}}}I_{\beta}{\neq}(0)$. Consider the following conditions: (i) If $P{\subseteq}{\cup}_{{\alpha}{\in}{\mathcal{A}}}P_{\alpha}$, then $P=P_{\alpha}$ for some ${\alpha}{\in}{\mathcal{A}}$; (ii) If ${\cap}_{{\beta}{\in}{\mathcal{B}}}I_{\beta}{\subseteq}P$, then $I_{\beta}{\subseteq}P$ for some ${\beta}{\in}{\mathcal{B}}$. In this paper, we prove that D satisfies $(i){\Leftrightarrow}D$ is a generalized weakly factorial domain of ${\dim}(D)=1{\Rightarrow}D$ satisfies $(ii){\Leftrightarrow}D$ is a weakly Krull domain of dim(D) = 1. We also study the t-operation analogs of (i) and (ii).

Keywords

Acknowledgement

Supported by : University of Incheon

References

  1. D.D. Anderson, J.L. Mott, and M. Zafrullah, Finite character representation for integral domains, Bollettino U. M. I. (7) 6-B (1992), 613-630.
  2. D.F. Anderson, G.W. Chang, and J. Park, Generalized weakly factorial domains, Houston J. Math. 29 (2003), 1-13.
  3. G.W. Chang, Weakly factorial rings with zero divisors, Lecture Notes in Pure and Appl. Math., Marcel Dekker, 220 (2001), 119-131.
  4. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  5. R. Gilmer, An intersection condition for prime ideals, Lecture Notes in Pure and Appl. Math., Marcel Dekker, 189(1997), 327-331.
  6. C.J. Hwang and G.W. Chang, A note on coverings of prime ideals, Comm. Korean Math. Soc. 14 (1999), 681-685.
  7. C.J. Hwang, A covering condition for the prime spectrums, East Asian Math. J.21(2005), 61-64.
  8. B.G. Kang, Prufer v-multiplication domains and the ring $R[X]_{N_{v}}$, J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  9. I. Kaplansky, Commutative Rings, revised edition, Univ. of Chicago Press, 1974.
  10. C.M. Reis and T.M. Viswanathan, A compactness property for prime ideals in Noetherian rings, Proc. Amer. Math. Soc. 25 (1970), 353-356. https://doi.org/10.1090/S0002-9939-1970-0254031-6
  11. W. Smith, A covering condition for prime ideals, Proc. Amer. Math. Soc. 30 (1971), 451-452. https://doi.org/10.1090/S0002-9939-1971-0282963-2
  12. M. Griffin, Some results on v-multiplication rings, Canad. Math. J. 19(1967), 710-722. https://doi.org/10.4153/CJM-1967-065-8