• Title/Summary/Keyword: servo-control

Search Result 1,728, Processing Time 0.028 seconds

Performance investigation of CNC system with interface between CNC controller and servo system (CNC 제어기와 서보시스템의 연결방식에 따른 특성조사)

  • 이현철;윤서영;이은호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.392-397
    • /
    • 1993
  • Generally machine tools can be divided into three components : NC Controller, the electrical drives and the mechanical transmission elements. For high speed, high precision machining, high performance control of servo system must be accommodated and one must carefully define the interface among three components. In this paper, we suggest a way to assist future development of CNC controller by investigating the characteristics resulting from different interface between CNC controller and servo system.

  • PDF

Implementation of Dual Servoing Using a Linear Motor and a Piezoelectric Actuator (리니어모터 및 압전구동기를 이용한 이중서보의 구현)

  • Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.249-252
    • /
    • 2002
  • For a precise position control with the resolution of a micrometer, a dual servo system is constructed using a linear motor and a piezoelectric actuator. The switching mode dual servo algorithm is implemented on a DSP board in which A/D and D/A converters are also mounted. It is shown by the experimental results that the precise position control is performed within a few micrometer of position error by using the dual servo system.

  • PDF

Adaptive Fuzzy Speed Controller Design for DC Servo Motor (직류 서보 전동기를 대상으로한 적응퍼지속도제어기의 설계)

  • Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.994-997
    • /
    • 2003
  • This Paper presents a study of the performance of a DC servo motor with a model reference adaptive fuzzy speed controller (MRAFSC) in the presences of load disturbances. MRAFSC comprised inner feedback loop consisting of the fuzzy logic controller (FLC) and plant, and outer loop consisting of an adaptation mechanism which is designed for tuning a control rule of the FLC. Experimental results show the good performance in the DC servo motor system with the proposed adaptive fuzzy controller.

  • PDF

Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation

  • Phillips, Brian M.;Takada, Shuta;Spencer, B.F. Jr.;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1081-1103
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) has emerged as an important tool for testing large and complex structures with a focus on rate-dependent specimen behavior. Due to the real-time constraints, accurate dynamic control of servo-hydraulic actuators is required. These actuators are necessary to realize the desired displacements of the specimen, however they introduce unwanted dynamics into the RTHS loop. Model-based actuator control strategies are based on linearized models of the servo-hydraulic system, where the controller is taken as the model inverse to effectively cancel out the servo-hydraulic dynamics (i.e., model-based feedforward control). An accurate model of a servo-hydraulic system generally contains more poles than zeros, leading to an improper inverse (i.e., more zeros than poles). Rather than introduce additional poles to create a proper inverse controller, the higher order derivatives necessary for implementing the improper inverse can be calculated from available information. The backward-difference method is proposed as an alternative to discretize an improper continuous time model for use as a feedforward controller in RTHS. This method is flexible in that derivatives of any order can be explicitly calculated such that controllers can be developed for models of any order. Using model-based feedforward control with the backward-difference method, accurate actuator control and stable RTHS are demonstrated using a nine-story steel building model implemented with an MR damper.

Design and Implementation for Motion Control System with Precise Driving Mechanism (정밀구동메커니즘 적용 모션제어시스템 설계 및 구현)

  • Lee, Sang-Kyung;Lee, Jun-Yeong;Choi, Yun-Seok;Park, Hong Bea
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.129-136
    • /
    • 2013
  • In this paper, a motion control system based on 2-axis gimbal system is designed and implemented to drive a high speed and precision. The proposed system consists of the RS-422 interface, 2-axis gimbal platform, servo control unit integrated with a high speed DSP chip-set, servo amplifier unit, potentiometer sensor unit, and resolver sensor unit. The servo control unit using the high speed DSP firmware is designed to get a fast response without an overshoot with step input and a RMS error of low probability with ramp input. The servo amplifier unit using a voltage control is designed to resolve the zero-crossing distortion for precise motion. To verify the performance and stability of the implemented system, experiments are performed through a measurement of the time and frequency domain response in a laboratory environment by using a PXI(PCI eXtentions for Instrumentation).

Position Control of D.C. Servo Motor Using Variable Structure Control with sliding mode (슬라이딩 모드를 이용한 DC Servo Motor 의 위치 제어)

  • Lee, Yoon-Jong;Lee, Il-Hyung;Son, Young-Dae;Oh, Won-Seok;Kim, Sin-Sup
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.571-575
    • /
    • 1989
  • A position control system of D.C. Servo motor based on discrete variable structure system with sliding mode is presented. The sliding mode has been designed for a continuous system, but it is often realized in digital fashion because the complex switching logic can be easily carried out. In digital control system, the ideal sliding mode does not occur since the structure can't be switched during sampling interval. However, there can be exist a motion which is confined to a regoin including the sliding surface and proceeds to the origin along the surface. This notion is called quasisliding mode. In this paper, we introduce this control scheme to the D.C. Servo motor position control in order to reduce the chattering phenonenon.

  • PDF

$H_{\infty}$ Depth and Course Controllers Design for Autonomous Underwater Vehicles (무인 수중운동체의 $H_{\infty}$ 심도 및 방향 제어기 설계)

  • Yang, Seung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2980-2988
    • /
    • 2000
  • In this paper, H(sub)$\infty$ depth and course controllers of autonomous underwater vehicles using H(sub)$\infty$ servo control are proposed. An H(sub)$\infty$ servo problem is foumulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H(sub)$\infty$servo problem is as follows; firest, this problem is modified as an H(sub)$\infty$ control problem for the generalized plant that includes a reference input mode, and than a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach, The H(sub)$\infty$depth and course controllers are designed to satisfy the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(was force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controlled are evaluated with computer simulations, and finally these simulation results show the usefulness and applicability of the propose H(sub)$\infty$ depth and course control systems.

Low Speed Servo System for Brushless Motor (브러시리스 전동기의 저속 서어보 시스템)

  • Lee, Woon-Young;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.162-164
    • /
    • 1994
  • This paper proposes a servo control system of brushless motor at a low and high speed range. The control system is composed of the PI controller for high-speed control and the modified PI controller for low-speed control and the current controller using the hysteresis current control PWM method. The speed control performance is shown by the computer simulation.

  • PDF