• Title/Summary/Keyword: servo-control

Search Result 1,728, Processing Time 0.027 seconds

Designing Compensators of Dual Servo System For High Precision Positioning (초정밀 위치 제어를 위한 이중 서보 시스템의 보상기 설계)

  • Choi, Hyeun-Seok;Song, Chi-Woo;Han, Chang-Soo;Choi, Tae-Hoon;Lee, Nak-Kyu;Na, Kyung-Whan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1309-1314
    • /
    • 2003
  • The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, Bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism.

  • PDF

Reconfiguration of Redundant Joints for Fault Tolerance of a Servo Manipulator (여유 자유도를 갖는 서보 매니퓰레이터의 내고장 제어를 위한 재형상 기법)

  • 박병석;안성호;윤지섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.899-906
    • /
    • 2004
  • In this paper, fault tolerant algorithm is presented for a servo manipulator system. For fault tolerance of a servo manipulator system, reconfiguration algorithm accommodating a motor's failure has been presented. The algorithm considers a transport's degree of freedoms as redundant joints of a servo manipulator. The reconfiguration algorithm recovers the end effector's motion in spite of one motor's failure A modified pseudo inverse redistribution method has been proposed for the reconfiguration algorithm. Numerical examples and hardware tests have been presented to verify the proposed methods.

Position Control of Servo Systems Using Feed-Forward Friction Compensation (피드포워드 마찰 보상을 이용한 서보 시스템의 위치 제어)

  • Park, Min-Gyu;Kim, Han-Me;Shin, Jong-Min;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.508-513
    • /
    • 2009
  • Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation.

MODELING AND CONTROL OF A MAGNETIC SERVO-LEVITATED FAST-TOOL SERVO SYSTEM (자기부상 초정밀 고속 공구 서보 시스템의 모델과 제어)

  • Hector-M.Gutierrez;Paul-I.Ro
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.348-353
    • /
    • 1994
  • Magnetic Servo Levitation (MSL) has been proposed as a method to drive a fast-tool servo system. This paper discusses some fundamental control and modeling issues in the development of a long-range high-bandwidth fast-tool servo based on MSL. A resursive linear model is developed to describe the system's dynamics linear model is developed to describe the system's dynamics, and further used to discuss controller design. For a given controller architecture, the performance of two controllers is then compared, one based on an approximation to the inverse plant dynamics, the second based on a adaptive neural network.

  • PDF

Distributed Control of DC Servo Motor on LonWorks-IP Virtual Device Network for Predictive and Preventive Maintenance (LonWorks-IP 가상 디바이스 네트워크상에서 예지 및 예방보전을 위한 DC 서보모터의 분산제어)

  • Song, Ki-Won
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.25-32
    • /
    • 2006
  • LonWorks over IP(LonWorks-IP) virtual device network(VDN) is an integrated form of LonWorks device network and IP data network. In especially real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. The time delay in servo control on LonWorks-IP based VDN has highly stochastic nature. LonWorks-IP based VDN induced transmission delay deteriorates the performance and stability of the real-time distributed control system and can't give an effective preventive and predictive maintenance. In order to guarantee the stability and performance of the system, and give an effective preventive and predictive maintenance, LonWorks-IP based VDN induced time-varying uncertain time delay needs to be predicted and compensated. In this paper new Pill control scheme based on Smith predictor, disturbance observer and band pass filter is proposed and tested through computer simulation about position control of DC servo motor. It is shown that how can the proposed control scheme be designed to minimize the effects of uncertain varying time delay and model uncertainties. The validity of the proposed control scheme is compared and demonstrated with the comparison of internal model controllers(IMC) based on Smith predictor with and without disturbance observer.

Autopilot Design of an Autonomous Underwater Vehicle Using Robust Control

  • Jung, Keum-Young;Kim, In-Soo;Yang, Seung-Yun;Lee, Man-Hyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.264-269
    • /
    • 2002
  • In this paper, Η$_{\infty}$ depth and course controller of an AUV(Autonomous Underwater Vehicle) using Η$_{\infty}$ servo control is proposed. The Η$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the Η$_{\infty}$ servo problem is as fellows: first, this problem is modified as an Η$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The Η$_{\infty}$ depth and course controller are designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed Η$_{\infty}$ depth and course control system.

A Study on the Improvement of Force Fighting Phenomenon in the Redundant Hydraulic Servo Actuators (다중 유압 서보 작동기의 force fighting 현상 개선에 관한 연구)

  • Lee, Hee-Joong;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2013
  • In general, multiple hydraulic servo actuators are installed on one control surface of aero-dynamically highly loaded condition aircraft for redundancy management to satisfy flight control safety requirements. If motions of multiple actuators are not synchronized, control surface is deformed from its free stressed state. In result, force fight conditions are generated on each actuator due to restoration reaction force of deformed control surface. In addition, force fight is induced from severe initial rigging tolerance. Force fight condition of multiple actuators affects control accuracies and reduces operational life of actuators and control surface due to fatigue phenomenon. In this study, we designed controller using force feedback to reduce force fight of duplex servo actuation system.

Design of DD motor controller using DSP (DSP를 이용한 DD motor의 제어기 설계)

  • 임선종;김일환;정광조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.26-28
    • /
    • 1993
  • DD motor, with large rotor inertia & wide range of torque, is different from other servo motor in control & drive characteristic. In this paper, for the development of flexible DD robot, we introduced the h/w & s/w technics of DSP to construct the velocity, position & torque control strategies and integrated 2 axes special purpose DD servo dirver into one VME bus.

  • PDF

Characteristics of Repetitive Positioning Control of a Linear Pulse Servo Motor

  • Masayasu, Yamamoto;Kouki, Matsuse
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.91-96
    • /
    • 1998
  • This study aims to realize high precision repetitive positioning control of the linear servo motor. The authors have previously improved the repeatability positioning precision by employing a two-degree-of-freedom PID controller in the positioning control, rather than equal distance positioning, and investigates the repeatability positioning precision.

  • PDF

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF