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ABSTRACT

Magnetic Servo Levitation (MSL) has been proposed as a
method to drive a fast-tool servo system. This paper discusses
some fundamental control and modeling issues in the
development of a long-range high-bandwidth fast-tool servo
based on MSL. A recursive linear model is developed to
describe the system's dynamics, and further used to discuss
controller design. For a given controller architecture, the
performance of two controllers is then compared, one based on
an approximation to the inverse plant dynamics, the second
based on a adaptive neural network.

INTRODUCTION

Fast-tool servos are actuator devices used to provide fine-tune
adjustment of the cutting tool position on real time during
some machining operations. They are aimed to compensate
errors resulting from mechanical misalignment, slide
vibration, tool wear, and cutting dynamics that can not be
properly corrected by the slide controller; its purpose is
therefore to achieve ultra-high precision accuracy, beyond the
limitations inherent to the slide controller.

Current designs are mostly based on the use of piezoelectric
stacks for exerting the fast-tool servo action. Although they
have a fairly high bandwidth, piezo-based FTS systems have
very limited range, in the order of tens of microns. Magnetic
Servo Levitation (MSL) has been proposed {9] as an
alternative who is also free of friction and backlash problems
accompanied by conventional mechanical actuators. While
MSL should be able to provide an adequate bandwidth within a
motion range twenty times larger than a piezo-based FTS,
there are a number of fundamental issues that make
implementation difficult. An MSL based system is inherently
unstable and highly non-linear. Most mathematical models
available for magnetic-based systems are only valid for small
displacements around a nominal gap, or not accurate enough to
achieve nanometer resolution. This paper addresses some of
the fundamental issues in design, modeling and control of such
type of actuators.

ELECTROMAGNET DESIGN
The basic design concept of the proposed MSL-based actuator
is depicted on Figure 1.

The electromagnets have an “E’-shaped geometry, with the
coil mounted on the middle leg of the “E”. The design equa-
tions were derived from basic electromagnetics; the two more
important ones are average flux, @, estimated as:
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and force, F, which is given by:
N' 2
Fe(— ) oA
1+ 28y
where N is the number of turns, i the current in the coil, [ the

length of the flux path, g the nominal gap, A the pole area, Uy

@

the relative permeability of the laminations, and [g the per-
meability of air. These equations were used to size the
electromagnets and determine overall dimensions of the
system. Figure 2 depigts schematically the final design
concept. Position feedback will be implemented by using a
laser interferometer, the target mirror being attached to the
back of the tool holder plate. Several other design issues
(structural design, vibrational modes, cooling and heat
transfer) have been addressed, but fall beyond the scope of this

paper.
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FIGURE 1: ELECTROMAGNET IC ACTUATOR CONCEPT

MATHEMATICAL MODEL OF THE
ELECTROMAGNETIC ACTUATOR

Modeling an electromagnetic actuator for long-range high-
precision applications requires taking into account several
aspects of the system that prevent the use of simplified
models, which in general share two basic assumptions:
uniform magnetic field density within the magnetic core, and
linear magnetic core operation (constant magnetic
permeability). Although for short-range low-bandwidth
applications (such as magnetic bearings) linear versions of
such models seem to work reasonably well [1,2], a long range
actuator, where displacement can not be described as small
perturbations of a nominal trajectory require a model that is
accurate over a wide range of displacement and frequencies.
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FIGURE 2: ACTUATOR SCHEMATIC

Finite-element based upled models.

An electromagnetic actuator is a coupled system where
motion equations are to be solved simultaneously with
electromagnetic and circuit equations. These models share the
use of finite-element methods as a tool to solve Maxwell’s
equations throughout the magnetic circuit.

The electromagnetic field equations can be solved off-line in
order to determine magnetic force and flux as static functions
of current and position. The finite-element problem is hence
solved for several combinations of current and position along
the range of motion. The solutions are later used to solve the
circuit and motion equations by interpolating parameter valucs
(force, flux) according to measured position and current.
Consider a two-magnet levitated system, as depicted in Figure
1. The system’s equations are as follows:

dy; dyr .
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where i1, iy are coil currents , W,y are total effective flux
linkages on coils 1 and 2, respectively, x1 is the left side gap,
X is the left side nominal gap (equilibrium position), Fe is an
external force applied to the moving mass and Fpag is the
magnetic force produced by the ith coil:
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Notice that these relationships are a quite general description
of the system since flux leakage is considered (the magnetic
flux is not assumed to link all the turns of a given coil) and
uniform field across the core or linear core operation are not
assumed. In the general case, inductances are given by:
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Yy =Liis Wy =Llaiy M
Equations (3) to (7) define the coupled model of the electro-
magneto-mechanical system:

L 0 0 0
dt 4 iy 0 .
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The coupled model can be used to simulate the system by
integrating (8) by some numerical technique such as the
Newton-Raphson method. This requires to previously obtain
the parametric surfaces:

Fmagl = Fmagl(il"‘lvxl)

Fmag2=Fmag2(ilvi2le) (%)

Vi =vlinixg)
Yo =yolipninx))

which can be done by interpolation among points provided by
the finite element solutions. Although FEM based methods
have the appeal of being based on first principles of physics,
they all involve a number of approximations and are sensitive
to both structural and material parameter uncertainties. Also,
they do not consider more complex effects such as Eddy current
losses, hysteresis or temperature effects. For long-range.
high-bandwidth, high- precision applications, they are no
accurate enough.

System _identification using parametric_models.

A model for the magnetically-levitated servo system can b
formulated in such a way that non-linearitics are separable and
additive:

2
a d“x
1 2
dr-
where each magnetic force can be described as some
polynomial of coil current and the corresponding air gap. For
instance, for the right magnet:
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Notice that in these equations x is measured from the
equilibrium position, i.e. in Figure 1, x = x1- Xg, where xg is
the nominal left-side air gap. Although there are some
references in the literature [9] about the use of polynomial
expressions such as (I11) to correlate magnetic force, current
and position on a static sense, the problem addressed here is to
find the unknown coefficients involved in (10) and (!1) such
that experimental input-output sequences can be fitted by
equation (10) in a minimum mean-square error sense.

Several techniques to solve this problem have been described
for linear systems [10,11]. In order to use linear parametric
techniques to find optimal fits for the parameters in egs.
(10,11), each rational term in (11) can be considered a separate
input to the system, in such a way that (10) can be rewritten as:

U
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(12)
On the other hand, consider the general case of the parametric
estimation problem for linear multiple-input single-output



systems. This can be formulated as the estimation of the
coefficients of polynomials A,B,C,D,EF in :

B

A@y0 = Eq;ul(t—mk])+.4.+F:£2;un(t-mkn)+
C(q)
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where y(t) is the current output prediction, e(t) is an unmodeled
disturbance and q is the delay operator, defined as: q'l f(t) =
f(t-T), T being the sampling rate. The parametric methods to be
considered are called prediction error methods and are based on
the minimization of a cost function which is the sum of the
squared prediction errors. Different mathematical techniques
can be used for that purpose.

Consider the auto-regressive moving average model with
exogenous input (ARMAX model), which is an special case of
(13) with F1(q) =...= Fu(q) = D(q) = 1. The coefficients of the
other polynomials can be grouped as a vector of unknown
parameters (8), namely:

O O Ry ]T

(14
where nu is the number of inputs. The Bayesian prediction
error is defined as:

e(tIB) =y(1)—y(t19) (15)

!
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The ARMAX one-step predictor can be shown to be [11]:

5(118) = By (Quy (O+..Bg (@) (1) +[1- A()]y(1)+ a16)

+[C(q)-1]e(t18)

where the polynomials Boj include the delay terms on (13).
Defining the one-step ahead regression vector:

O8Y=[~y(t=1)es=y(t—ng ), uy (L= 1),y iy (L=npy ).
g (0= Dy Uy (E= 0y ), ECE = 108),.,8(t =1 10)]T
an
The ARMAX regression model can now be written as:
510y =0%o(110) = 6T (116)0 (18

The estimation problem is aimed to minimize the prediction
error cost function:

1N,

JN(e)zﬁE}E (t,8) (19)
Defining: E(e):[e(liG),.“,s(N]G)]T, and the matrix O(8) such
that  o0ji(q) = 9e(116)/06;, the gradient g of Jy can be
expressed as:

2®=20 = Lo (20)

and similarly, the Hessian matrix H of Jiy is given by:

3%J 1 ao<e)
o
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This defines the Gauss-Newton algorithm for updating the
parameter vector, namely, for a step size s:
8,41 =8; ~sH™'g(8)) (22)

Approximating H as the left term at the right side of (21), the
algorithm becomes:
Bi41 =6; —s(00T)™ O(8;)E(8;) (23)

Using (15) and (18), the vector E(8) is defined as a function of
both input-output measurements and the vector of unknown
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parameters. Then (20), (21) and (23) define the algorithm that
updates 8 until the minimwn value (or a local minimum) of Jy
is reached. Notice that previous knowledge or "reasonable
guesses" of the system's parameters (e.g. effective mass,
estimated spring stiffness) significantly improves the speed
of convergence and minimizes the chance of hitting local
minima since they provide initial estimates to the algorithm.

Parameters of the magnetically-levitated scrvo system model
(12) were estimated using the Gauss-Newton algorithm
(20,21,23) by first converting (12) to the discrete domain, and
then expressing the system's equations as the ARMAX model
derived from the general form (13). Model parameters were
determined from exciting the system with band-limited noise.
Model response was then analyzed with different excitation
signals; results (actual output and model predicted output} are
shown in Figure 3 A and B. It can be noticed that under some
excitations (Fig. 3B) the model is not sufficiently damped to
properly track the actual response, while in Figure 3A the
model seems to be overdamped. This was corroborated on
different tests under different ranges and frequencies, and
suggested that the damping term or perhaps the weighting
coefficients in the force functions, or both, are actually
dependent on position and therefore time-varying.
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FIGURE 3B. STEP RESPONSE

Since it was not possible to find a given set of parameters
that would fit all different sets of data under different
experimernial conditions, a recursive adjustment of the model
parameters was found necessary. Notice that the Gauss-Newton
algorithm converges to a unique set of parameters and therefore
models the spring-miass system as time-invariant.

There are several alternatives to recursively updating the
vector of system's parameters [12]. A typical recursive
identification algorithm is:

800 =Bt - D+ KW){y(1) - 5(6)]

X @4
$(=0T(1)6(t-1)



where y(1) is the observed output at time t and §(t)is a pre-
diction of y(t) based on observaticas up to time t-1. K(1) is
typically chosen as a function of the regression vector (eq.
17). which can be conceived as an estimate of the gradient with
respect to 6 of the one-step ahead predictor (eq.18).

A somewhat simple approach to compute K(t) is to assume a
certain model for how the "true” parameters 84 change. For

instance, this could be described as a white gaussian process
with covariance matrix M{ . A natural choice would then be the
use of a Kalman algorithm to find K(1), although it would only
be optimal if the underlying description of the observations
were a linear regression. The Kalman gain in (24) would be:

V(t- Dot
K(t)= (t= Dot 25)
M, +6(t)" Vi—1o(t)
The corresponding covariance matrix of the estimated
parameters would be:

V(- DOWOO V=D 26)

=V(t—1 A, — -
Y =N BT V(- Do

where M| is the covariance of the true parameters and M7 is
the variance of the innovations: e(t)= y(t)—-Q)T(t)Bo(t). This
approach can be modified if the estimation of My, M3z is
difficult, by discounting old measurements exponentially in
such way that an observation that is T samples old carries a

weight that is AT of the weight of the most recent observation.
The cost function (19) then becomes:

t-k.2 9
N kzlk e“(k,0) 27

In(,8)=—
{n this context, T =1/(1-A) can be conceived as the memory
horizon of the approach. The criterion (27) can now be
minimized, yielding a different choice for K(t):
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The resulting algorithm (24,28.29) is called the Forgetting
Factor approach with forgetting factor A. This algorithm was
implemented to fit experimental input-output data from the
magnetically-levitated system, using A =0.98. The model was
initialized by using a vector of parameter estimates and its
covariance matrix V(t), generated "off-line” by the Gauss-
Newton algorithm, using data from band-limited noise
excitation. Results are shown in Figure 4, A and B. It is
remarkable that under a wide range of displacements and
frequencies, the model thus developed is able to track the
measured output with maximum errors ranging from 05t01 %.
Further analysis showed that the auto correlation of the error
stays within a 95 % confidence interval of that of a white
process. Independence was also analyzed through cross
correlating the output with each input, and all combinations
showed independence to within 95% confidence.

CONTROLLER DESIGN

The Coordinated Feed-forward Control Methoa
(CFCM) structure.

The development of a model that is both linear and robust
opened the possibility of using a controller structure based on
an estimation of the inverse plant dynamics. The coordination
of feed-forward control method (CFCM) described in [13] and
[14] will be used as a basic structure to compare controller
performance. The CFCM structure is depicted on Figure 5, and
is (in the general case) a MIMO structure, where P represents
the plant, B the desired dynamics (model reference system). A
is a feed-forward controller, G a feedback loop controller, and
yr the desired system's response.

FIGURE 5. THE CFCM CONTROL STRUCTURE

The design equations are:
PA=B
PG =T (-TL)!
and if P is invertible, this yields:
A=pPlB
G=plraT! (30

The selected feedback loop response (Tp) is the transfer
function from y; to y. If P is unstable, care must be taken when
choosing T[, in order to avoid zero-pole cancellations within
the loop. If P is stable, we can make TL(I-TL)'1 =B, and it is
easy to see that the global transfer function (r to y) becomes B,
the desired dynamics.

Approximate inverse.plant dynamics.
The recursive model described in the previous section
provides a description of the plant as a MISO system:

Bx(q)

B(q) i
~Al gy (t—mkg up(t—mky)+
! ! Ag) N N Alg

A(q)

v(t)= )c(t)
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where the inputs are delayed rational terms of current and
position, and the outpui y(1) is the next position estimate,
Since the plant is not square (number of inputs and outputs are
different) the inverse plant problem does not have an exact
solution but instead a minimum mean-square error solution

(T1(q) .. TN(IT defined by:

Ul([)
y(©)=[G,(a).....Gn ()] +A(q)e([)
UN([)
(32)
Tl(q)
= o IG @) G (@] = T
Tn(q)

where the delays are now included on the transfer functions G.
Although several techniques have been proposed to estimate
the inverse plant on a minimum mean square error sense [15],
the procedure in general involves the estimation of the
impulse response (for each transfer function), and a matrix
inversion, where the order of the matrix is related to the
number of terms considered when truncating the impulse
response. Since model parameters are changing at every
iteration, this approach would be impractical from a compu-
tational time standpoint for a real time application.

For this reason, a different approach has been undertaken.
From a physical point of view, there are only two independent
inputs (the coil currents). Since there is only one output, a
constraint can be imposed that link both inputs in such a way
that the system is invertible. For instance:

i1=i+ ig;ipg=-i +ig (33)

vhere io is some constant bias. This constraint is easy to
‘mplement, but more important than that is the fact that both
‘urrents have to be somehow be related in order to achieve
sptimal performance (from a control effort point of view), and
:herefore even if (33) is replaced by some other relationship,
ihere will always be some expression relating i1 and i2.

Now consider (31), where each transfer function is a two-pole
model, and all inputs have the same delay (mg=p for all u).
['hen (31) can be rewritten as:

P N .
0= eI iy (0 5~ -+nz<r>2

l+a;q7) +a (X, — X X «x)’
19 29 1{Xo j=1{xo

+11(t)2 +if (1) 2 (34)

0) m= I(x+x ™

where x=x(t)=y(t) is the current position estimate,and Xg is the
nominal gap. This can be expressed in the discrete domain as:

p Ha1Xgipot FA2Xk4pa2 =i, (O f; (x )+ 13 (K2 (X)) +

+i](k)f3(xk)+i12(k)f4(xk) (35)

Combining (33) and (35), an estimate for the required current
signal i(k) can be gbtained, given measurements x(1}...x(k-:)
and target locations x(k). x(k+p), x(k+p-1), x(k+p-2). This
represents an approximation to the inverse plant dynamics,
since (33) is not exact (is limited by hardware). All
coefficients in (35) are updated at every iteration.

Since all the corresponding two-pole models in (34) have
been found to be stable, this approximate inverse can be used
to implement the CFCM controller by takmg Ty, d-TL) =B,
with B given by:

B(s)=

©;

Sy 36
s% + 28w ,s+ 02 G0

where {=0.9 and w,p=1800(2n) Hz. This compensator was
tested by computer simulation, tracking a 190 Hz sinusoidal
command reference. The sampling rate was 8 KHz, results are
shown in Figure 6, for p=2 and N=4.
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FIGURE 6. CFCM CONTROLLER PERFORMANCE WITH
ALGEBRAIC INVERSE PLANT

inverse plant dynamics on-line estimation by
adaptive neural networks.

The inverse plant dynamics in the CFCM control structure can

also be estimated by an artificial neural network. However, the
results from the modeling section suggest that a multi-layer
feed-forward ANN would probably have problems to identify
the inverse plant. This is due to the inherent similarity
between training a neural net and finding an optimal set of
parameters to fit input-output data by a prediction error
method: in both cases the sum of squared errors is iteratively
evaluated, and the parameters are updated in the direction of
the error gradient until the minimum (or a local minimum) of
the error surface is reached.
Since we do not expect that a given set of fixed parameters will
he able to model all different sets of data (in the same scnse
that a time-invariant regressive model failed to do so),
adaptive neural network identification was attempted.

FIGURE 7. SINGLE LAYER LINEAR NETWORK

The network structure is a single layer of linear neurons, where
the number of inputs is given by a tab-delayed line, as depicted
on Figure 7. The network is trained adaptively (i.e., a single
input vector is presented at each time step) using the Widrow-
Hoff rule. For a single layer network, the Widrow-Hoff
algorithm is defined as:

2
d
aw [ ZWUPJ] =_2‘:il:’j (37)

Awy =Tie;p;; Ab=nE, where Aw=nEpT



where wij is the corresponding weight from input j to neuron i,
p(Rx1) is the input vector, t the target vector, e the network
error and T) the learning rate. Notice that this type of structure
provides a minimum mean-square error linear estimate of the
non-linear system. An adaptive linear model will be highly
accurate as long as the non-linear system stays near a given
operating point. If the operating point changes, it takes a few
iterations to the adaptive linear network to adjust to the new
operating point. It is easy to see that keeping a high enough
sampling rate is critical, since we would like to obtain the
linear model of the non-linear plant at the current operating
point in the shortest amount of time.

The single layer adaptive linear network was used as an
inverse plant predictor within the CFCM structure, and tested
by tracking the same 190 Hz sinusoidal command reference as
in the previous section. The sampling rate was 8 Khz, results
are shown in Figure 8.

Notice the fundamental similarity between both control
methods: on both the model-based inverse plant and the
adaptive neural net approach, the algorithms are using
previous measurements and future desired positions to estimate
the next point in the control signal trajectory. Both schemes
use adaptive algorithms to adjust model coefficients, based on
the optimization of some cost functional. However, the neural
network performs better since it estimates the current signal
trajectory itself, as opposed to the algebraic inverse method in
which the direct plant dynamics is estimated (to predict future
values in the output trajectory) and the required current is
calculated backwards using (33) and (35).
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FIGURE 8. CFCM CONTROLLER PERFORMANCE WITH
SINGLE LAYER ADAPTIVE LINEAR NETWORK

CONCLUSIONS

Recursive parametric system identification has proven to
successfully model the dynamics of the magnetically-levitated
fast tool servo system.

Some remarkable features of the model here presented include
the fact that prior knowledge of the system can be incor-
porated, eliminating some fundamental system identification
problems such as determination of model order and model
structure. Initial guesses of some model parameters given by
physical characteristics of the system facilitates convergence
of the algorithms and help avoid local minima. The system has
been found to be time-varying, which illustrates that the main
difference between this fast-tool servo and purely levitated
devices (e.g. magnetic bearings) is given by parametric
uncertainties in the mechanical structure.

The model is linear and exact (no need for approximations or
further assumptions), and performs well under a wide range of
displacements and frequencies. On the other hand, the
calculations involved in recursively estimating model pa-
rameters are fairly simple (equations 22,26,27) and can be
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performed within the contro! loop without major sacrifice in
closed-loop bandwidth. Since the resulting structure is linear
time-varying, several linear controller design techniques are
readily available to use with this model.

The coordination of feed-forward control method (CFCM) has
been presented and evaluated with two different inverse plant
dynamics estimators. The results look very promising,
although final implementation will indeed bring a number of
new problems. The neural network-based estimator seem to
perform better than the algebraic inverse plant, although this
may not be so if the final version is forced to run at smaller
sampling rates due to hardware limitations. On the other hand,
the type of command signal used in this particular experiment
(sinusoid) may be making particularly easy to the neural
network to adapt to successive operating points . At any rate,
the results strongly suggest the use of adaptive techniques
both to model and control the magnetically-levitated fast-tool
servo.
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