• Title/Summary/Keyword: servo drive

Search Result 407, Processing Time 0.03 seconds

A New Improved Continuous Variable Structure Tracking Controller For BLDD Servo Motors (브러쉬없는 직접구동 전동기를 위한 새로운 개선된 연속 가변구조 추적제어기)

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.47-56
    • /
    • 2005
  • A new improved robust variable structure tracking controller is presented to provide an accurately prescribed tracking performance for brushless direct drive(BLDD) servo motors(SM) under uncertainties and load variations. A special integral sliding surface suggested for removing the reaching phase problems can define its ideal sliding mode and virtual ideal sliding trajectory from an initial position of SM. The tracking error caused by the nonzero value of the sliding surface is derived. A corresponding continuous control input with the disturbance observer is suggested to track a predetermined virtual ideal sliding trajectory within a prescribed value under all the uncertainties and load variations. The usefulness of the proposed algorithm is demonstrated through the comparative simulations for a BLDD SM under load variations.

  • PDF

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

Dual-Stage Servo System using Electrostatic Microactuator for Super-High Density HDD (정전형 마이크로 액추에이터를 이용한 초고밀도 HDD용 Dual-Stage 서보 시스템)

  • Kim, Seung-Han;Seong, U-Gyeong;Lee, Hyo-Jeong;Lee, Jong-Won;Choe, Jeong-Hun;An, Yeong-Jae;Jeon, Guk-Jin;Kim, Bong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.153-160
    • /
    • 1999
  • Dual-stage servo system for super-high density HDD has the chances of being composed of the coarse actuator(VCM) for track-seeking control and the fine actuator(microactuator) for-following control in near future. This paper presents the concept design of dual-stage servo system and the track-following control using an electrostatic microactuator for super-high density HDD. The electrostatic microactuator is designed and fabricated by MEMS(micro-electro-mechanical system) process. Both the nonlinear plant(voltage/displacement-to-electrostatic force) and the linear plant(electrostatic force-to-displacement) of the microactuator are established. Inverse function of the nonlinear plant is employed for a feedforward nonlinear compensator design. And feedforward control effect of this compensator is shown by time-domain experiments. A track-following feedback controller is designed using the feedback nonlinear compensator which is derived from the feedforward nonlinear compensator. The track-following control experiment is done to show the control efficiency of the proposed control system. And, excellent track-following control performance(2.21kHz servo-bandwidth, 7.51dB gain margin, $50.98^{\circ}$phase margin) is achieved by the proposed control system.

  • PDF

Controller Design of Piezoelectric Milliactuator for Dual Stage System (이중 구동 시스템을 위한 압전 밀리엑추에이터의 제어기 설계)

  • Eo-Jin, Hong;No-Cheol, Park;Hyun-Seok, Yang;Young-Pil, Park
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.965-971
    • /
    • 2003
  • To reach high areal density, less track pitch is expected and more servo bandwidth is required. One approach to overcoming the problem is by using dual stage servo system. For this system. we have suggested new milliactuator based on the shear mode of piezoelectric elements to drive the head suspension assembly. In this paper, we introduce milliactuator and controller design method, PQ method. PQ method reduces the controller design problem for DISO (dual-input/single-output) systems to two standard controller design problems for SISO ( single-input/single-output) problems. The first part of PQ method directly addresses the issue of actuator output contribution, and the second part allows the use of traditional loop shaping to achieve the overall system performance. This paper shows how to employ the PQ method to meet aggressive close-loop performance specifications for a disk drive system with a VCM and piezoelectric milliactuator.

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

Anti-shock Controller Design for Optical Disk Drive Systems with Nonlinear Controller (광디스크 드라이브 시스템을 위한 비선형 제어기를 이용한 Anti-Shock 제어기 설계)

  • Baek, Jong-Shik;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.675-677
    • /
    • 2004
  • This paper presents a nonlinear controller design for optical disk drive systems to improve anti-shock performance. The nonlinear anti-shock controller is added parallel to the original linear servo control loop. In the previous work, dead-zone nonlinear element is used for nonlinear controller and PID control method is used for linear controller. Although this strategy improves anti-shock performance, it has a narrow stability bound. In this paper, we propose dead-zone with saturation nonlinear element for the nonlinear controller. Since this nonlinear element improves stability margin, we can use higher gain of dead-zone than the controller with dead-zone only. In the linear controller design, we show that lead-lag control has improved stability margin over PID control. Numerical simulation results show that the proposed method can get better performance to the external shock than previously proposed method.

  • PDF

Performance Enhancement of Optical Disk Drive Servo System using Dual modified Disturbance Observer (광디스크 드라이브 서보 시스템을 위한 수정된 외란관측기)

  • Kim, Moo-Sub;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.738-740
    • /
    • 2004
  • The disturbance observer is effective in enhancing the performance of position control in high speed optical disk drive systems(ODDS). It is known that error based modified disturbance observer (EM-DOB) is more effective structure than general DOB. It has a simple structure and realization, but it loses robustness. We propose a dual modified disturbance observer(Dual mDOB). It consists of internal loop EM-DOB and external loop DOB. Those loops are designed for different objects. We see that the dual mDOB is an effective method for tracking performance.

  • PDF

The PWM Speed Control of DC servo Motor for Movable Robot Drives (자립형 이동로보트 구동을 위한 DC서보전동기 PWM속도제어)

  • Hong, S.I.;Kim, C.J.;Jo, C.J.;Kim, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1185-1187
    • /
    • 1992
  • In this paper, PWM control is applied to the microprcessor-based adjustable speed dc motor drives. The motor drive system is composed of phase locked loop. Main drive circuit of the system is consisted of H-type bridge with switching transistors. PWM drive circuit is linearized by adding flywheeling diodes. And also. We study the optimum PWM data and period time so that it hase a nearly liner relationship between current and torque.

  • PDF

Tracking Performance Improvement for Optical Disk Drive Using Error-based Modified Disturbance Observer (오차 기반의 수정된 외란 관측기를 이용한 광디스크 드라이브의 트랙 추종 성능 향상)

  • Kim Hong-Rok;Choi Young-Jin;Suh Il-Hong;Chung Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.637-643
    • /
    • 2006
  • Generally, the tracking performance of optical disk drive(ODD) system can be improved using a disturbance observer(DOB). However, a DOB is not easily applied in an ODD system because an additional microprocessor, such as a digital signal processor(DSP), is needed. This paper shows how a DOB system can be replaced by the error-based modified disturbance observer(EM-DOB) when two mathematical conditions are satisfied. Due to the simplified structure of EM-DOB, the algorithm is easily implemented as an analog circuit, which is suitable for the ODD servo system. Additionally, in these algorithms, disturbances rejection performances can be tuned as Q filter parameters. Similar to a DOB system, three design guidelines of a Q filter can be applied. Experimental results of DOB and EM-DOB are evaluated under forced disturbances.