• Title/Summary/Keyword: service system optimization

Search Result 287, Processing Time 0.027 seconds

Extended Proportional Fair Scheduling for Statistical QoS Guarantee in Wireless Networks

  • Lee, Neung-Hyung;Choi, Jin-Ghoo;Bahk, Sae-Woong
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.346-357
    • /
    • 2010
  • Opportunistic scheduling provides the capability of resource management in wireless networks by taking advantage of multiuser diversity and by allowing delay variation in delivering data packets. It generally aims to maximize system throughput or guarantee fairness and quality of service (QoS) requirements. In this paper, we develop an extended proportional fair (PF) scheduling policy that can statistically guarantee three kinds of QoS. The scheduling policy is derived by solving the optimization problems in an ideal system according to QoS constraints. We prove that the practical version of the scheduling policy is optimal in opportunistic scheduling systems. As each scheduling policy has some parameters, we also consider practical parameter adaptation algorithms that require low implementation complexity and show their convergences mathematically. Through simulations, we confirm that our proposed schedulers show good fairness performance in addition to guaranteeing each user's QoS requirements.

Damage assessment of composite structures using Particle Swarm Optimization

  • Jebieshia, T.R.;Maiti, D.K.;Maity, D.
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.24-28
    • /
    • 2015
  • Composite materials are highly sensitive to the presence of manufacturing and service-related defects that can reach a critical size during service condition and thereby may affect the safety of the structure. When the structure undergoes some kind of damage, its stiffness reduces, in turn the dynamic responses change. In order to avoid safety issues early detection of damage is necessary. The knowledge of the vibration behavior of a structure is necessary and can be used to determine the existence as well as the location and the extent of damage.

BrDSS: A decision support system for bridge maintenance planning employing bridge information modeling

  • Nili, Mohammad Hosein;Zahraie, Banafsheh;Taghaddos, Hosein
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.533-544
    • /
    • 2020
  • Effective bridge maintenance reduces bridge operation costs and extends its service life. The possibility of storing bridge life-cycle data in a 3D parametric model of the bridge through Bridge Information Modeling (BrIM) provides new opportunities to enhance current practices of bridge maintenance management. This study develops a Decision Support System (DSS), namely BrDSS, which employs BrIM and an efficient optimization model for bridge maintenance planning. The BrIM model in BrDSS extracts basic data of elements required for the optimization process and visualizes the inspection data and the optimization results to the user to help in decision makings. In the optimization module of the DSS, the specifically formulated Genetic Algorithm (GA) eliminates the chances of producing infeasible solutions for faster convergence. The practicality of the presented DSS was explored by utilizing the DSS in the maintenance planning of a bridge under operation in the southwest of Iran.

Analysis and optimization research on latch life of control rod drive mechanism based on approximate model

  • Ling, Sitong;Li, Wenqiang;Yu, Tianda;Deng, Qiang;Fu, Guozhong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4166-4178
    • /
    • 2021
  • The Control Rod Drive Mechanism (CRDM) is an essential part of the reactor, which realizes the start-stop and power adjustment of the reactor by lifting and lowering the control rod assembly. As a moving part in CRDM, the latch directly contacts with the control rod assembly, and the life of latch is closely related to the service life of the reactor. In this paper, the relationship between the life of the latch and the step stress, friction stress, and impact stress in the process of movement is analyzed, and the optimization methodology and process of latch life based on the approximate model are proposed. The design variables that affect the life of the latch are studied through the experimental design, and the optimization objective of design variables based on the latch life is established. Based on this, an approximate model of the life of the latch is built, and the multi-objective optimization of the life of the latch is optimized through the NSGA-II algorithm.

Optimization for Relay-Assisted Broadband Power Line Communication Systems with QoS Requirements Under Time-varying Channel Conditions

  • Wu, Xiaolin;Zhu, Bin;Wang, Yang;Rong, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4865-4886
    • /
    • 2017
  • The user experience of practical indoor power line communication (PLC) applications is greatly affected by the system quality-of-service (QoS) criteria. With a general broadcast-and-multi-access (BMA) relay scheme, in this work we investigate the joint source and relay power optimization of the amplify-and-forward (AF) relay systems used under indoor broad-band PLC environments. To achieve both time diversity and spatial diversity from the relay-involved PLC channel, which is time-varying in nature, the source node has been configured to transmit an identical message twice in the first and second signalling phase, respectively. The QoS constrained power allocation problem is not convex, which makes the global optimal solution is computationally intractable. To solve this problem, an alternating optimization (AO) method has been adopted and decomposes this problem into three convex/quasi-convex sub-problems. Simulation results show the fast convergence and short delay of the proposed algorithm under realistic relay-involved PLC channels. Compared with the two-hop and broadcast-and-forward (BF) relay systems, the proposed general relay system meets the same QoS requirement with less network power assumption.

A Route Optimization Mechanism using an Extension Header in the IPv6 Multihoming Environment (IPv6 멀티호밍 환경에서 확장 헤더를 이용한 경로 최적화 메커니즘)

  • Huh, Ji-Young;Lee, Jae-Hwoon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • A multihomed enterprise or AS(Autonomous System) improves reliability and performance by acquiring its Internet connectivity from more than two ISP(Internet Service Provider). Multihoming protocol must allow a multihomed site whose connectivity through one of the ISPs fails to keep its Internet connectivity As one of mechanisms to do this, tunneling mechanism through Non-direct EBGP(Exterior Border Gateway Protocol) is defined. This mechanism makes connectivity to the Internet more reliable, but causes the problem that makes the communication route non-optimal. In this paper, we propose the route optimization mechanism using an extension header in the IPv6 multihoming environment.

Comparison of Three Optimization Methods Using Korean Population Data

  • Oh, Deok-Kyo
    • Korean System Dynamics Review
    • /
    • v.13 no.2
    • /
    • pp.47-71
    • /
    • 2012
  • The purpose of this research is the examination of validity of data as well as simulation model, i.e. to simulate the real data in the SD model with the least error using the adjustments for the faithful reflection of real data to the simulation. In general, SD programs (e.g. VENSIM) utilize the Euler or Runge-Kutta method as an algorithm. It is possible to reflect the trend of real data via these two estimation methods however can cause the validity problem in case of the simulation requiring the accuracy as they have endogenous errors. In this article, the future population estimated by the Korea National Statistical Office (KNSO) to 2050 is simulated by the aging chain model, dividing the population into three cohorts, 0-14, 15-64, 65 and over cohorts by age and offering the adjustments to them. Adjustments are calculated by optimization with three different methods, optimization in EXCEL, manual optimization with iterative calculation, and optimization in VENSIM DSS, the results are compared, and at last the optimal adjustment set with the least error are found among them. The simulation results with the pre-determined optimal adjustment set are validated by methods proposed by Barlas (1996) and other alternative methods. It is concluded that the result of simulation model in this research has no significant difference from the real data and reflects the real trend faithfully.

  • PDF

Location Trigger System for the Application of Context-Awareness based Location services

  • Lee, Yon-Sik;Jang, Min-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.149-157
    • /
    • 2019
  • Recent research has been actively carried out on systems that want to optimize resource utilization by analyzing the intended behavior and pattern of behavior of objects (users, consumers). A service system that applies information about an object's location or behavior must include a location trigger processing system for tracking an object's real-time location. In this paper, we analyze design problems for the implementation of a context-awareness based location trigger system, and present system models based on analysis details. For this purpose, this paper introduces the concept of location trigger for intelligent location tracking techniques about moving situations of objects, and suggests a mobile agent system with active rules that can perform monitoring and appropriate actions based on sensing information and location context information, and uses them to design and implement the location trigger system for context-awareness based location services. The proposed system is verified by implementing location trigger processing scenarios and trigger service and action service protocols. In addition, through experiments on mobile agents with active rules, it is suggested that the proposed system can optimize the role and function of the application system by using rules appropriate to the service characteristics and that it is scalable and effective for location-based service systems. This paper is a preliminary study for the establishment of an optimization system for utilizing resources (equipment, power, manpower, etc.) through the active characteristics of systems such as real-time remote autonomous control and exception handling over consumption patterns and behavior changes of power users. The proposed system can be used in system configurations that induce optimization of resource utilization through intelligent warning and action based on location of objects, and can be effectively applied to the development of various location service systems.

Development of Web-based High Throughput Computing Environment and Its Applications (웹기반 대용량 계산환경 구축 및 응용사례)

  • Jeong, Min-Joong;Kim, Byung-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.719-724
    • /
    • 2007
  • Many engineering problems often require the large amount of computing resources for iterative simulations of problems treating many parameters and input files. In order to overcome the situation, this paper proposes an e-Science based computational system. The system exploits the Grid computing technology to establish an integrated web service environment which supports distributed high throughput computational simulations and remote executions. The proposed system provides an easy-to-use parametric study service where a computational service includes real time monitoring. To verify usability of the proposed system, two kinds of applications were introduced. The first application is an Aerospace Integrated Research System (e-AIRS). The e-AIRS adapts the proposed computational system to solve CFD problems. The second one is design and optimization of protein 3-dimensional structures.

  • PDF

The Optimal Operation for Community Energy System Using a Low-Carbon Paradigm with Phase-Type Particle Swarm Optimization

  • Kim, Sung-Yul;Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.530-537
    • /
    • 2010
  • By development of renewable energy and more efficient facilities in an increasingly deregulated electricity market, the operation cost of distributed generation (DG) is becoming more competitive. International environmental regulations of the leaking carbon become effective to reinforce global efforts for a low-carbon paradigm. Through increased DG, operators of DG are able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, a community energy system (CES) with DGs is a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to transmission service charges and other costs. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize profit. Considering the international environment regulations, CE will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper introduces the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES. A Particle Swarm Optimization (PSO) will be used to solve this complicated problem. The optimal operation of DG represented in this paper would guide CES and system operators in determining the decision making criteria.