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Extended Proportional Fair Scheduling for Statistical QoS
Guarantee in Wireless Networks

Neung-Hyung Lee, Jin-Ghoo Choi, and Saewoong Bahk

Abstract: Opportunistic scheduling provides the capability of re-
source management in wireless networks by taking advantage of
multioser diversity and by allowing delay variation in delivering
data packets. It generally aims to maximize system throughput or
guarantee fairness and quality of service (QoS) requirements. In
this paper, we develop an extended proportional fair (PF) schedul-
ing policy that can statistically guarantee three kinds of QoS. The
scheduling policy is derived by solving the optimization problems
in an ideal system according to QoS constraints. We prove that the
practical version of the scheduling policy is optimal in opportunis-
tic scheduling systems. As each scheduling policy has some param-
eters, we also consider practical parameter adaptation algorithms
that require low implementation complexity and show their conver-
gences mathematically. Through simulations, we confirm that our
proposed schedulers show good fairness performance in addition
to guaranteeing each user’s QoS requirements.

Index Terms: Convergence, convex optimization, opportunistic
scheduler, proportional fairness, quality of service (QoS) con-
straint, utility.

I. INTRODUCTION

Recently, in wireless systems, broadband and high frequency
have been implemented to meet the high bandwidth demands
of each user. Wireless system targets accommodating various
user applications. To make this happen, we use packet schedul-
ing as a means of resource management which is a hot issue
these days. In contrast to wire-lined systems of fixed channel
rates, wireless systems have channels of time-varying features,
which enables opportunistic scheduling. Third generation (3G)
cellular systems such as CDMA2000 1xEV-DO evolved from
high data rate (HDR), and the high speed downlink packet ac-
cess (HSDPA) of universal mobile telecommunications systems
(UMTSs) have deployed their own schedulers that run on the
top of some mechanism that measures and gathers the channel
state of each user.
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The primary purpose of scheduling is to improve wireless
channel efficiency by first serving users that have good chan-
nel conditions, Even though such a scheme shows good perfor-
mance in terms of throughput, it has a fairness problem. Some
users located near the cell boundary have bad channel condi-
tions compared to others close to the base station. If the objec-
tive is throughput maximization, bad channel users have a lower
chance of selection than good channel users. Therefore, fairness
is an important performance measure that also must be consid-
ered.

A fair scheduler attempts to give each user an equal chance,
insofar as it is possible, regardless of channel condition. The
proportional fair (PF) scheduler in [1}-[3] achieves proportional
fairness while taking advantage of multiuser diversity [4]. Due
to its simplicity, it was adopted in the CDMA2000 1xEV-DO
system. In some sense, fairness is a factor of quality of service
(QoS) because it guarantees some portion of resources to each
user. The fair scheduling in [5] has the objective of meeting each
user’s throughput target. In a strict sense, it needs to be applied
for resources remaining after guaranteeing each user’s QoS.

Delay is another QoS measure. The objectives of scheduling
in [6] and [7] are to guarantee the delay bound of each user. In
[8], the satisfaction of each user’s fixed deadline and the max-
imization of achievable revenue have been considered together.
These schedulers have the explicit delay constraint for oppor-
tunistic scheduling. If a scheduler continuously provides a fixed
level of throughput for each user, it can guarantee each user’s
delay bound. In [9], the throughput requirement was expressed
as a form of effective capacity.

In addition to throughput fairness and delay, temporal fair-
ness, minimum throughput, and utilitarian fairness are consid-
ered as QoS metrics. After the QoS metrics are introduced in
[10], they are commonly accepted QoS requirements in wire-
less scheduling. In [10], an opportunistic scheduling algorithm
for guaranteeing minimum throughput has been proposed. It has
the objective of utility maximization, and considers other QoS
requirements such as temporal fairness and utilitarian fairness.
Temporal fairness aims to allocate a fixed portion of time to each
user while the utilitarian fairness aims to provide some portion
of utility for each user. The temporal share fairness leads each
user to get histher minimum time share. For example, if there are
50 scheduling opportunities and user 1 wants 20% of the tempo-
ral share, the scheduler chooses user 1 more than 10 times. This
metric targets achieving equality of opportunity like a weighted
round robin. The minimum throughput requirement leads each
user to receive some minimum throughput regardless of its lo-
cation. In this case, a bad channel user needs to be scheduled
more often than others in a good channel if his/her minimum
throughput requirements are the same. Utilitarian fairness or
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throughput-share requirement demands the scheduler to allocate
each user more than a minimum portion of the total through-
put. A high priority user who requires high throughput-share
is scheduled more often compared to a low priority user. These
three QoS requirements are independent, and sometimes each
user may require different combinations of these. However, the
scheduling policies in [10] can not support multiple QoS types
for each user.

The utility is a useful tool that can be used for fairness man-
agement. The utility represents the satisfaction level of each
user, so we can define the utility in many ways. In [1], it was
shown that the PF scheduler maximizes the utility that has a
logarithmic form of average throughput. In [11] and [12], the
utilities are defined as a function of instantaneous signal to in-
terference ratio (SIR) and signal to interference and noise ra-
tio (SINR), respectively. In [13] and [14], a function of aver-
age throughput is used as utility while the instantaneous rate is
used for mathematical analysis. In [15], the utility is defined as
a concave function of average throughput and the convergence
of PF scheduling is discussed. In [16], the utility is given as a
function of instantaneous channel rate multiplied by the aver-
age serviced resource. In [17], a utility is given as a function
of bandwidth and its performance is evaluated through simula-
tions. In [18] and [19], a weighted PF scheduling algorithm and
gradient based scheduling algorithm was proposed from utility
maximization formulation. In [20], gradient algorithm with min-
imum/maximum rate constraints was proposed for scheduling,
and in [21], the optimality of the gradient scheduling algorithm
was proved asymptotically.

As utility, we can consider two types of functions. One is
the function of average throughput. If we apply this to a down-
link scheduling system, we can compute the utility after a suf-
ficient amount of time. The PF scheduling corresponds to this
type and uses a logarithmic function. The other is the func-
tion of throughput for one timeslot. This is referred to as slot
utility. The scheduling policy in [10] uses this type. We can
easily verify that these two types result in different utility val-
ues when applied for a finite number of time slots. For exam-
ple, assume that the throughputs of a user for four consecutive
slots are 4, 2, 9, and 1 Mbps, respectively. If the utility has a
form of the square root of throughput, the utility of the former
type is /(4 + 2+ 9+ 1)/4 = 2 and that of the latter type is
(vV4++v/24+/94/1)/4 ~ 1.85. In our opportunistic schedul-
ing, we use the former type.

In this paper, we deal with the derivation and the optimality
proof of extended PF scheduling that guarantees three types of
QoS metric statistically, and the convergence of proposed pa-
rameter updating algorithm. Although the QoS metrics of our
proposed scheduling is the same as those in [10], there is a dif-
ference between them. That is, our proposed scheduling has the
generalized form of PF scheduling, which is the most popular
type for opportunistic scheduling, while Liu’s proposal is not
applicable for the PF type scheduler. Our proposal can also sup-
port the combined type of QoS metrics. In this paper, we first
show the relationship between our scheduling and PF schedul-
ing, and prove the optimality of our scheduling policies through
mathematical analysis. Then, we develop an algorithm for up-
dating parameter values for our scheduling policies based on
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the stochastic approximation in [23] and prove its convergence.
These parameters act like weights that help our schedulers to
meet each user’s QoS requirements by compensating for time-
varying channel conditions.

Our proposed scheduling policies have several merits. First,
they can support different utility functions for different users.
Although it is a natural assumption that each user can have
his/her own utility function, some existing schedulers assume
that each user has the same utility function for the convenience
of analysis or implementation. Second, our policies can also
support combined types of QoS requirements for each user.
Lastly, our policies are simple enough for easy implementation.
Compared to the existing PF scheduler, our schedulers require
an additional step of parameter adaptation, whose overhead is
light.

The rest of our paper is organized as follows. In Section II,
we derive an extended PF scheduling policy and prove the opti-
mality of the policy. An adaptive algorithm to update schedul-
ing parameters for optimal schedulers is also presented and their
convergence is dealt with. Simulation results are given in Sec-
tion I1I, followed by the conclusion in Section IV.

. OPTIMAL OPPORTUNISTIC SCHEDULER

In this section, we consider optimal opportunistic scheduling
in a single channel downlink system that uses time division mul-
tiplexing. An example system is given in Fig. 1. In our model,
there are M mobile stations (MSs) and the base station (BS)
sends the pilot signal periodically. We assume that proper ad-
mission control is provided, though it is not shown in Fig. 1.
Each MS measures its channel gain and feeds it back to the BS.
Each MS has its own utility function and reports the form of
utility function to the scheduler before the scheduling service
starts. The scheduler selects a user who will be served at the
next slot. Scheduling parameter values are updated according to
each user’s channel condition, scheduling results, and QoS re-
quirements. To design an efficient and stable scheduling system,
the optimality of scheduling policy part and the convergence of
parameter adaptation part should be guaranteed.

We consider two kinds of scheduling schemes. One is an off-
line optimal scheduling and the other is opportunistic schedul-
ing. In an off-line scheduling scheme, unrealistic assumptions
of knowing the channel rates beforchand are used because its
purpose is the mathematical derivation of an optimal scheduling
policy. Off-line scheduling can be formulated into an optimiza-
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tion problem, and its solution is an optimal scheduling policy.
According to QoS requirements, scheduling policies have differ-
ent forms and the optimal scheduling policy for combined QoS
requirements can be derived. The reason we solve an off-line
scheduling scheme is that its scheduling policies are also opti-
mal in an opportunistic scheduling scheme. Although the defini-
tions of used terms are slightly different, opportunistic schedul-
ing policies have analogous form with off-line scheduling poli-
cies. The optimalities of opportunistic scheduling policies can
be proved. The opportunistic scheduling scheme is formulated
into a stochastic optimization problem, and scheduling param-
eter updating algorithms are proposed by using a stochastic ap-
proximation. Opportunistic scheduling does not use unrealistic
assumptions.

A. Optimal Scheduling Policy Derivation with the Scheduling
Interval of N Slots

The purpose of an off-line optimal scheduling policy is to fa-
cilitate the conjecture of optimal scheduling policies according
to QoS requirements. An off-line scheduling policy considers a
scheduling interval which we set at N slots. We assume that the
channel rate of user m at slot n, 7,,,,, is known when scheduled.
Actually the assumption is unrealistic. In a real system, 7, s for
all n can not be known because MSes just feed back the channel
status of the previous slot. To formulate scheduling as an op-
timization problem, the assumption is necessary so let’s admit
it. The scheduler determines the transmission sequence every IV
slots. The objective of the scheduling is the maximization of
utility. We express the utility function for user m as

1 N
Up =Un (Kf Z /)mn'r'mn)

n=1

M

where p,,, indicates a portion of slot n allocated for user m.
The utility function is assumed to be monotonically increasing
with the average throughput. It is concave and differentiable,
We represent its first order derivative as U}, (). Since only a
single user is assigned in a slot, Py, = 1if user m is scheduled
in slot n and pp,,, = 0 in other case. If we define s, as the
scheduled user at slot n, the off-line scheduling becomes finding
the vector § = (s1, - -+, si) having the maximum utility value
in N x M vectors. Though it needs much calculation, it is not
hard to find optimal vector S*. Instead we focus on finding the
property of optimal S* because from the property we can derive
the simple scheduling policy.

Referring to the utility maximization as an unconstrained op-
timum problem, we formulate it as follows. Contrary to an origi-
nal problem where only one user is served at each slot, we allow
several users to share a slot by dividing it into smaller pieces.
This relaxation makes the theoretical analysis simple.

M
maximize Z U (7m)

m=1
M
subject to Z Pmn = 1, )
m=1
0<pma <1,

forn=1,--,Nandm=1,---, M

JOURNAL QOF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 4, AUGUST 2010

where 7, (= 1/N Z;’Ll PmnTmn ) 1 the average service rate of
user m for the period of V. This is a convex optimization prob-
lem because the objective function is concave and the feasible
set is convex, so it yields a unique solution.

Lemma 1: The total utility is maximized by serving user
my,, at slot n where

* ! o
m;, = argmax U, (75) Prans

N
rrn = l/’N Z p:ﬂnnrﬂln M (3)
n=1

7, is determined after all slots are scheduled, so the equation
is expressed in recursive form. We omit the proof of Lemma 1
because it is a particular case of Theorem 1 that will be given in
Appendix A. Lemma 1 does not hold if more than a user has the
same U/ (r},) "mn at slot 7. A non-integer value of py,,, leads
to an optimal solution but it is not achievable in a practical time
division multiplexing system. So, we need a tie-breaking rule
like random selection which determines a non-integer value of
Pmn When U], (17) rmy’s of more than one user are the same.

To make the scheduling policy achieve not only generalized
proportional fairness but also guarantee QoS, we consider three
types of QoS constraints for the utility maximization problem:
Temporal share constraint, minimum throughput constraint, and
throughput-share constraint. For the temporal share constraint,
we can express the constraint for user m as

N
1
N D Pmn > am, ¥ )

n=1

where a,, is the minimum portion of time slots that need to be
allocated for user m, and a,,, should satisfy Eﬁfml O < 1. IF
a new comer cannot be admitted because time slots are lacking,
a negotiation process may follow.

Lemma 2: For the temporal share constraint problem, the to-
tal utility is maximized by serving user m;, at slot n, where

m; = arg max {U, (r5) rmn + Am } (5)
and A, is the Lagrange multiplier for user m.

The proof of Lemma 2 also can be included in the proof
of Theorem 1. In Lemma 2, we use a Lagrange multiplier
to achieve the optimality. The Lagrange multiplier works as a
compensation factor to meet each user’s QoS requirements that
could not be met in standard PF scheduling. If user m has a good
channel, its QoS can be met by setting A, at zero. Otherwise,
Am should have a positive value. A detailed algorithm to obtain
Am will be given later.

The minimum throughput and throughput-share requirements
for user m can be written as follows:

T 2 b, (6)
M
T = Cm, Z r,¥Ym

i=1

(7

where b,,, is the minimum throughput required by user m and
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cm 1s a portion of the total throughput required by user m.
From the throughput-share constraint, we have Zgl c < 1.
For the minimum throughput constraint, no exact condition ex-
ists because the total system capacity is not fixed and depends
upon users’ channel conditions and the scheduling result. If the
scheduling result is unstable for guaranteeing each user’s mini-
mum throughput, a negotiation process should request relevant
users to relax their minimum throughput requirements,

Lemma 3: For the minimum throughput constraint problem,
the total utility is maximized by serving user ), at slot n where

= argmax (U}, (ri) + i} Pon. (8)
Lemma 4: For the throughput-share constraint problem, the
total utility is maximized by serving user m, at slot n where

m;, = argmax {U,, (r}) + &m — T} Tmn )]

and 7 = Zi\nlzl GmCm-

The constants y,,,’s and ¢,,,’s are the corresponding Lagrange
multipliers, respectively. We can prove Lemmas 3 and 4 by us-
ing the proof of Theorem 1, so we omitted them. Lemmas 2
through 4 do not hold if more than one user has the largest value
of scheduling equation at some slot, so a tie-breaking rule is nec-
essary again. These problems with added QoS constraints still
maintain the form of convex optimization.

There is a possibility that each user has different QoS require-
ments. That is, one user requires temporal share performance
while other users require minimum throughput performance.
Some users may require temporal share and throughput-share
performances together. This motivates us to consider a schedul-
ing for combined QoS requirements. The scheduling can be for-
mulated as an optimization problem as follows:

M
maximize E Up, (7m)

m=1

M
subject to Z Pmn = 1,

m=1
0 < pmn <1,

! (10)
“j]\;’r Z Pmn = Qm, YN

n=1
Tm = bm,Vm
M
Tm = Cm Zri,‘v’m
i=1

forn=1,---, Nandm =

where rp, (= 1/N Zn_l PmnTmn)-
Theorem 1: For the combined constraint problem, the total
utility is maximized by serving user m}, at slot n, where

s M

Tn;; = arg Ir%gx {Um ('I":n) + tm + ¢)77‘L - ﬂ'} T'mn + }\m (1 1)

and w:zgle ®mCm. The non-negative parameters A,,’s, fir,’s,
and ¢,,’s satisfy the conditions of Am(—g;f;’:l Pmnt am)=0,

,Um(?"m - bm) =0, and ¢m(7'm —Cm Z?zfl Ti) =0.
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The proof of Theorem 1 is given in Appendix A. In the equa-
tion, Lagrange multipliers are independently determined and the
tie-breaking problem still remains.

B. Opportunistic Optimal Scheduling Policy

We consider the case of utility maximization that does not
have the scheduling interval constraint. Unlike off-line schedul-
ing, this scheduling does not use the assumption of knowing the
channel rates of several slots beforehand. Let’s assume that the
scheduler knows each user’s channel rate for the current slot. Its
policy considers the total utility maximization and QoS guaran-
tee for each user in a probabilistic manner. We represent the
instantaneous transmission rate for user m at slot n as R, that
is similar to ry,,,, in the case of scheduling interval of N slots,
but R, is a random variable while r,,, 1s constant. Assume
that R, is a stationary process. Then, we can remove its slot
index without ambiguity, and user m transmits at a rate of R,
when scheduled. The scheduling policy () takes the feasible rate
of each user as input and chooses a user to be served. It gives
the average throughput of Eﬁ = E(RmI{g—my) for user m,
where the indicator function I{g—,,} is 1 if user m is selected,
and 0 otherwise.

Denoting the utility function for user m as U, = U, (ESL),
we can formulate this problem as follows:
&l Q
max U, (ﬁ ) . 12
2 m}; (B (12)

The following theorem describes a form of optimal scheduler
that satisfies the above objective.

Lemma 5: If the scheduling interval is not given, the
scheduling policy
QF = argmax U, (ﬁz ) R (13)

maximizes the total utility.
Proof: For any feasible scheduling policy @, we have

L U’ m (Hm ) Hml{(,gmm} < Z U, m ( “m ) IV)WI{Q*””’}

el me=1
(14)

=@ . s .
where Ri is the user m’s average throughput obtainable by
scheduler @*. Considering the expectation on both sides, we

obtain
M o M N .
,;1 U (B ) B < ;21 v, (B ) R

R?;) (7 —Rﬁ*) <0. (15)

Using the vector notations, we get

VU(Rq-)(Rq —Re-) <0 (16)
where VU(R) = (U3 (Ra), - Up(Ran)). R = (77,
LR, and Ro- = (R} ,-- RM) This means that U(R.)
has the maximum at R = Rq-. o
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The scheduling policy in Lemma 5 is very similar to that
in Lemma 1. The differences are as follows: i) Whether the
scheduling policy is off-line or on-line and ii) whether the chan-
nel rate is deterministic or stochastic. There is no need of a tie-
breaking rule in the opportunistic scheduling because it does not
influence the scheduling result in the long term average. Even
when a tie-breaking occurs, the effect of temporarily unbalanced
allocation does not last long owing to the compensation of later
schedulings. Therefore our opportunistic scheduling policy re-
sults in a stochastic global optimum. In subsection II-D, we deal
with the convergence of the proposed scheduling policy.

The scheduling policy given in Lemma 5 becomes HDR
scheduler,! which is one of the implemented PF schedulers, if
the utility function has a logarithmic form of the throughput rate.

Q" = argmax U, (Tii ) R,, = argmax f—;gi 17)
This scheduling policy selects a user that has a normalized max-
imum rate. Obviously it yields the maximum throughput if the
utility is a linear function of throughput.

Now we develop opportunistic schedulers that maximize the
total utility while satisfying each user’s QoS requirements. Ac-
cording to the previous three constraints, we can obtain the fol-
lowing three facts, respectively. First, we consider the case that
user m requires a slot with the minimum probability c,.

Lemma 6: The scheduling policy
) Bt A}

maximizes the total utility under the constraint Pr{Q* = m} >
am, wWhere the non-negative parameters A},’s satisfy the condi-
tion A%, (Pr{Q* = m} — ay,) =0

The optimality of this opportunistic scheduling is achieved
by the utility maximization and the QoS guarantee in addition
to the adaptation of A,,. A user in bad channel needs an appro-
priate A, to receive the desired QoS in the utility maximization
policy. To compensate for the QoS gap, Ay, should have a posi-
tive value, so the utility maximization problem s constrained by
A8,

Second, we consider the case that user m requires the mini-
mum average throughput of 3,,,.

Lemma 7: The scheduling policy

Q" = argmax {U, (R, (18)

Q= argmax{U;n (7o ) + Hy } Bom (19)
maximizes the total utility under the constraint RS,, > Bms

where the non-negative parameters j..’s satisfy the condition

,um(R — Bm) =0.

Lastly, we consider the case that user m requires a portion v,
of the total throughput.

Lemma 8: The scheduling policy

Q" = arg max {U,’n (Ez) + - 71'} Ry (20)

IHDR scheduler uses a sliding window algorithm to calculate average
throughput.
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*

maximizes the total utility under the constraint Rf;)l

>

Ym Zf\f RQ where m = Zm 1 Py ¥Ym, and the non-negative
parameters ¢r.’s satisfy the condition

7
@m( N Zz 1 R )
We omit the proofs of Lemmas from 6 to 8 because they are

similar to that for the following combined scheduling policy that
can support each user’s heterogeneous and various QoS require-
ments. Like before, there exist p’s and ¢’s lead the scheduling
policies to meet the minimum throughput and throughput-share
requirements.

If each user has different QoS requirements in opportunistic
scheduling, the following scheduling policy can be used.

Theorem 2: The scheduling policy

Q"= argmax {UT'n (Eﬁ ) + oy, + 0, — 7r} Ry + A5,

2D

maximizes the total utility under the constraints Pr{Q* =

—g
m} Z O, Rm > /Bmy andR > "szz 1R
To= Z% 1 @5 Ym. The non-negative parameters A%,’s, ur.’s,

and gb* ’s satisfy the conditions of A *(Pr{@Q* =m}- am) =,

15 (B — Bm) = 0and ¢, (Ree — 7 Y00, RY ) =

This policy successfully satisfies all the three QoS require—
ments and its optimality is proved in Appendix B; therefore, it
can support any type of QoS. For example, if user m requires the
temporal share of 10%, the QoS parameters are set at o = 0.1,
B = 0, and v = 0. If user { requires a temporal share of 20%
and a minimum throughput of 50 kbps, the QoS parameters are
set at o = 0.2, 8 = 50,000, and v = 0. For parameter adapta-
tion, A, u, and ¢ are computed in accordance with the channel
conditions and QoS requirements of all the users.

where

C. Parameter Adaptation Algorithm

In implementing optimal schedulers, we need to find La-
grange multipliers and calculate the average throughput. For La-
grange multipliers, a parameter adaptation algorithm is needed
to adapt those estimated values to optimal ones. The stochas-
tic approximation theory plays an important role in ensuring the
estimated values to approach the optimal ones if QoS require-
ments are met. This means that the scheduling result becomes
stable and optimal. Our proposed algorithm considers the tem-
poral share constraint only, but it can be easily applied for other
constraints also.

Lagrange multipliers from Lemma 5 must satisfy the follow-
ing optimality conditions.

Ay, > 0 (non-negativity) ,
Pr{Q* = m} — o, > 0 (feasibility)
Ar (Pr{@" = m} — a.,) = 0 (complementary slackness) .
(22)

The non-negativity condition is a property of the Lagrange mul-
tiplier, and the feasibility condition comes from the QoS con-
straint that user m’s temporal share should be equal to or greater
than ;. The complementary slackness describes the condition
for a point to be optimal and stable where a user that receives a
temporal share greater than its requirement has zero A. In con-
trast, a user that does not receive as large of a temporal share as
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Table 1. Noisy observations.

QoS requirement Noisy observaton

Temporal share Gk = I{Qp=m} — ¥m

Minimum
=Rmlio,—m} —
throughput gm.k mlI{Q,=m} — Bm
Throughput- m.k :A}}mI(Qk=m} _
share Ym > iy Ril{o, =i}

required has a non-negative A that is used to overcome the utility
value due to poor channel conditions in providing required QoS.

Since these conditions do not specify what A’s should be, our
parameter adaptation algorithm aims at finding those values by
a stochastic approximation. To do so, we define a function

2 ) = A (Pr{Q=m} - ), form=1,--- M
(23)
and search for its zeros on the non-negative region. Actually,
f2 (\m) has a trivial zero of \,,, = 0, so we need to search for
zeros of the function

fm Qm) =Pr{Q =m} —a,, foom=1,--- M. (24)
In the kth iteration (or slot), we use estimated A, 5 and select
a user to be served by an intermediately obtained scheduler Q.
Here, (k. is not an optimal scheduler because it uses transient
Am,k’s instead of A% ’s. Also, fr, (Am k) contains a probability
term that makes its accurate value unattainable. By introducing
a noisy observation

gmk = L{Qr=m} — Om (25)
we can solve the parameter adaptation problem. That is
/\m,k+l = max ()\m,k - 6kgm,k, 0) (26)

where 6y is a step sequence for adaptation. The max function
implements the projection onto the non-negative region, and the
step sequence satisfies the following: d; > 0, dx — 0, and
> 10k — oo. The function fi, (A\n) increases with A, in a
monotonic manner so that it has a unique zero, which we denote
as z. If z < 0, Ay, converges z and it is forced to approach
zero. From f,,, (0) > f, (2) = 0, we can find that A, of zero
satisfies all the three conditions. If z > 0, A, 1 converges at z,
and it becomes optimal since f,, () = 0. From these observa-
tions, we can conclude that our algorithm always gives a correct
answer.

The noisy observations for minimum throughput and
throughput-share requirements can be obtained in a similar way.
Table 1 summarizes these results.

D. Convergence of'Scheditling Algorithms

The proposed scheduling system has the property of opti-
mality and convergence. In this subsection, we deal with the
convergence of the parameter adaptation part. In combined QoS
scheduling, there are four parameters that need updating at ev-
ery slot. These are average throughput R and QoS parameters
A, i, and ¢. The average throughput is updated by

R k1 = Bk + €k [Rmpt1Im k1 — Ron k] 27
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where €, = 1/k and I,, 1, is an indicator function that equals 1
if the scheduler selects MS m at slot k, otherwise 0. Then, we
obtain R i = 1/k Y5 | Rm.ilm,i. The updating algorithms
for the QoS parameters are introduced in subsection II-C. The
analysis procedures are given in [23] and [15].

Before considering the convergence of throughput, we define
the shifted process R i as the follows.

k+i—-1 k+l1

Rk (t) = Rpys fort € [ > ej,zsj) (28)
=k j=k

ﬁm,k (t) is differentiable, and ﬁm,k (t) and the original se-
quence R,, ; show the same behavior as k goes towards infinity.
Under the assumption that instantancous I, is stationary, we

can define its expectation as follows according to [15]:

hm (R)=E [RmI{Fm(ﬁ;)\,lh‘p)ZFj(E§Av/"’¢)’j¢m}:| @

where F,,(R, A\, 1, ¢) = {U'(Rin) + fim + ¢ — T} R + A
and F,,,(R;\, i1, ¢) is a function of R when ), p, and ¢ are
given.

Theorem 3: If the initial condition is given as the origin vec-
tor, R weakly converges to the unique solution of the following
ordinary differential equation (ODE)

Rm = Em (E) - ﬁm‘ (30)

Proof: According to [15], this theorem can be sufficiently

proved by showing that f(R) satisfies the Kamke condition (K-
condition) where f(R) is defined as

f(R)=h(R)-R. 31)
If f(R) satisfies fm(ﬁ) < fm(R) when R < R and
R, = Ry, [ satisfies K-condition. For vector inequality in
K-condition, we define R < R when R; < R; for all j. Since

U;(R) is concave, UJ(R;) > UJ(R;) if R; < R;. For this

reason, if R; < R;, we have

> F} ﬁ;/\,u,aﬁ , JFEM,

Fy (R, 0) (32)

=F (R;\ 1), j=m.

This results in the following relation.

fm (R) = [R’”I{Fm (Rixue) 2 F; (Rid ) ,j;ém}] ~ fim

<F [Rmf { F,
— fm (ﬁ) .

So, f (ﬁ) satisfies K-condition. O

Theorem 3 guarantees the convergence of throughput when
QoS parameters are given. Since QoS parameters are also up-
dated at every slot by the parameter adaptation procedures, the
convergence behavior of QoS parameter updating algorithms

) (ﬁ;/\,lﬁ@) >F; (fi;)\,p,tb) ,j#m}] — R,

(33)
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should be verified. The convergence of the algorithms can be
shown through the similar procedures as in Theorem 3 and the
definition of ODE and K-condition. The following lemmas deal
with the convergence of QoS parameters.

Lemma 9: When the initial condition is given as the origin
vector, A converges weakly to the unique solution of the follow-
ing ODE

().

Lemma 10: When the initial condition is given as the origin
vector, 4 converges weakly to the unique solution of the follow-
ing ODE

-

Am =70 (34)

form, = Gy, (1) - (35)
Lemma 11: When the initial condition is given as the origin
vector, ¢ converges weakly to the unique solution of the follow-

ing ODE ) ‘
Pm =T (8) - (36)

In Lemma 9, we define g7\, (}) as

Gm (N =B [am - I{Fm(ME;W)ZFJ'(A;ﬁ,u,tﬁ),j#m}J - 37

Equation (37) comes from the noisy observation (25) in the pa-
rameter adaptation algorithm. Similarly, g%, () and g2, (¢) are
defined as

Ton (1) = E [ = Bond g, (i 0)2r, (fors).im} |
(38)

M
I () =E [“Ym Z R@'I{Fl-(¢;E,A,u)2F,-(¢;ﬁ,A,u) i}

=1
— Bmlfp, (52 0)2F; (¢;E,«\,u),j¢m}] » (39)

respectively. The proof of Lemma 9 is given in Appendix C.
Lemmas 10 and 11 can be proved similarly. As these param-
eters are updated simultaneously, their convergences should be
guaranteed. In the proof, other parameters (such as A, p, and
¢ in Theorem 3) are assumed to be fixed, so the results have a
limited meaning.

I11. SIMULATION RESULTS
A. Performance of Optimal Scheduling Policies

We performed simulations for optimal scheduling policies un-
der the requirements of temporal share (scenario 1), minimum
throughput (scenario 2), and throughput-share (scenario 3). Sce-
nario 4 deals with a heterogeneous requirement case. In sce-
nario 5, the proposed scheduling algorithm is compared to other
scheduling algorithms. We assume that physical channel char-
acteristics can be abstracted to a user’s feasible data rate perfor-
mance according to a probabilistic model, so we consider five
users whose feasible rates are exponentially distributed with the
mean of 100, 200, 300, 400, and 500 (kbps), respectively in sce-
nario 1, 2, 3, and 5. In scenario 4, we consider 20 users that have
good, medium, and bad channel conditions. A detailed channel
description of scenario 4 is given in the result explanation part.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 4, AUGUST 2010

Table 2. Temporal share and utility for scenario 1.

Case 1 (10%) Case 2 (20%)
User Temporal | yfiy Teg‘;‘gfga‘ Utility
1 10.08 1942 19.60 315
2 1052 5528 19.49 8445
3 16.92 122.77 19.42 138.14
4 26.56 223.51 19.87 193.86
5 35.92 339.73 21.53 260.99
Total 100.0 760.71 100.0 709.59

Table 3. Average throughput and utility for scenario 2.

Case 1 (0 kbps) Case 2 (50 kbps)

User Avg. throughput | Utility | Awg. throughput | Utility
1 45.85 3.83 52.56 3.96
2 91.21 4.51 71.17 4.26
3 136.10 491 106.35 4.67
4 184.20 522 148.34 5.00
5 229.74 5.44 192.18 5.26

Total 687.10 23.91 570.60 23.15

Scenario 1 has the utility function of Uy, (RS) = R%, and sce-
narios 2 through 4 have Uy, (R$) = In R. For the parameter
adaptation algorithm, the step sequence is given as 1000/ (k + 1)
for scenario 1, and 1/(k + 1) for scenarios 2 and 3. Simulations
are executed for the duration of 10,000 slots and the scheduling
parameters are initially set to zero.

We consider the minimum temporal share requirements of
10% (case 1) and 20% (case 2) in scenario 1. As the utility
function is linear, the scheduler targets maximizing the through-
put. The results are summarized in Table 2. The scheduler
strictly meets the temporal share requirements in the both cases.
In case 1, the scheduler allocates a minimum number of slots
for users 1 and 2 because their channels are poor. To maximize
the utility, the scheduler prefers users in good channels, thereby
allocating more slots for them. The results indicate that user 5
has the best channel. In case 2, slots are allocated according
to the users’ temporal share requirements as the slot utilization
reaches 100%. The total utility in case 1 is larger than that in
case 2 because case 1 has more flexibility in scheduling.

In scenario 2, we set the minimum throughput requirement at
0 kbps (case 1) and 50 kbps (case 2), respectively. Our scheduler
satisfies the minimum throughput requirement for each user suc-
cessfully, as shown in Table 3. Case 1 has no constraint, so the
scheduler acts like a PF scheduler because the utility function
has a logarithmic form. In case 2, there is a minimum through-
put requirement, so the total utility in case 2 is less than that in
case 1. This is because the gain in case 2 is limited by the con-
straint.

In scenario 3, we set the throughput-share requirement at
10% (case 1) and 20% (case 2), respectively. Table 4 shows
that our scheduler satisfies the throughput-share requirement for
each user successfully. Like in scenario 1, case 1 confirms that
our scheduler works well, even when some users experience bad
channels. After meeting each user’s requirement, it allocates the
remaining slots for users in good channels. In case 2, the sum
of throughput share requirements is 100%. As the requirement
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Table 4. Throughput-share and utility for scenario 3.
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Table 6. Throughput comparison for scenario 5.

Case 1 (10%) Case 2 (20%) Case 1 Case 2

User User PF
Throughput-share | Utility | Throughput-share | Utility Prop. W-PF Prop. W-PF
1 11.86 4.00 20.32 4.23 1 45.81 72.23 61.17 81.18 61.09
2 14.65 4.22 20.05 4.22 2 91.80 71.84 96.27 80.90 96.88
3 19.53 4.50 19.96 4.21 3 136.97 107.80 125.37 82.25 126.37
4 24.68 473 19.89 4.21 4 182.33 145.05 151.33 108.55 151.63
5 29.28 4.90 19.78 4.21 5 229.69 178.45 174.10 13591 173.68
Total 100.0 22.35 100.0 21.08 Total 686.60 | 575.36 | 608.24 | 488.79 609.65

Table 5. Heterogeneous QoS requirements and scheduling results for

scenario 4.
Temporal share th?(\)/sr;;lgpe it Throughput share
User ™ Req. Result Reg. Result Reg. Result
(%) (%) (kbps) (kbps) (%) (%}
1 2 2.12 0 12.94 0 0.71
2 0 2.58 20 20.71 0 1.13
3 0 5.54 0 37.17 2 2.04
4 1 2.63 20 20.64 0 1.13
5 1 2.32 0 18.75 1 1.03
6 0 2.67 20 20.71 1 1.13
7 1 2.70 20 20.32 1 1.11
8 0 2.62 0 2542 0 1.39
9 1 2.04 20 24.12 0 1.32
10 1 3.67 0 39.33 2 2.15
11 1 1.99 20 23.07 0 1.26
12 0 1.74 0 21.93 1 1.20
13 1 2.26 20 26.21 1 1.44
14 2 2.23 20 26.03 1 1.43
15 0 9.37 0 224.60 0 12.30
16 0 9.91 20 237.63 0 13.01
17 1 11.34 0 267.74 2 14.66
18 1 10.54 20 250.31 0 13.71
19 1 10.66 0 255.98 1 14.02
20 0 11.07 20 252.62 1 13.83
Total 100 1826.22 100

sum is too tight, too much room exits for scheduling, so the total
utility becomes smaller than in case 1.

In scenario 4, we examined a more realistic situation. There
are 20 users, and they have different channel states and QoS
requirements. There are three channel states in this scenario.
Users 1 through 7 have bad channels, so their feasible rates are
exponentially distributed with a mean of 100. Users 8 through
14 have medium channels, so their mean parameter is 200.
Users 15 through 20 have 800 as mean parameters because they
have good channels. The heterogencous QoS requirements for
each user and the simulation results are shown in Table 5. They
confirm that our scheduler successfully meets the heterogeneous
QoS requirements for each user under a realistic situation.

In scenario 5, we compare the proposed scheduling algorithm
with the PF scheduling algorithm and weighted PF schedul-
ing algorithm. We set the minimum throughput requirement at
70 kbps and 80 kbps for each user in cases 1 and 2, respectively.
In the weighted PF scheduling algorithm, the weighting factor is
multiplied by the PF scheduling metric. The weighting factors
of user m are set by the algorithm in [24]. In [24], the weight-

ing factor is determined by the required activity detection algo-
rithm, Table 6 shows the throughput results of the scheduling al-
gorithms. Proposed scheduling algorithm satisfies the minimum
throughput requirement. The throughput performances of other
scheduling algorithms are better, but they cannot guarantee the
minimum throughput requirement.

B. Convergence of Optimal Scheduling Policies

To implement an optimal opportunistic scheduler in real sys-
tems, there are two basic requirements: simplicity and stabil-
ity. In terms of complexity, our algorithm requires a few more
additions for the parameter calculation compared to the HDR
scheduler. For stability, our algorithm results in stable resource
allocation and parameter values with fast convergence. To ob-
serve the convergence of our scheduler, we trace the received
QoS level for each user and its Lagrange multipliers.

Assume that there are three users whose average feasible rates
are 200, 300, and 800 (kbps), respectively. The utility function
has a linear form. Figs. 2 and 3 show the convergence behaviors
of our scheduler under the temporal share constraint of 20% for
each user. The three users each receive each shares of 20.7, 20.7,
and 58.6%, respectively. User 1 has the largest A; of 130.1 be-
cause he/she has the worst channel, while user 2 has the smallest
Az of 0 because his/her channel condition is the best. All the pa-
rameters converge in about 3,000 slots at most, meaning that the
QoS parameter of A converges reasonably fast.

Figs. 4 and 5 show the convergence behaviors of our sched-
uler under the minimum throughput constraint of 100 (kbps).
The number of users and their average feasible rates are the same
as before. The utility function has a logarithmic form. Each user
obtains the throughput of 113.1, 149.7, and 412.7 (kbps), re-
spectively, which meet each user’s QoS requirement well. The
A’s of users 1, 2, and 3 converge at 0.0504, 0.0268, and 0.0108,
respectively.

Figs. 6 and 7 show the convergence behaviors under the
throughput-share constraint of 20% each. The other conditions
are the same as those for the minimum throughput constraint.
The throughput-shares of each user are 22.9%, 27.1%, and
50.0%, respectively.

Figs. 8 and 9 show the convergence behaviors of three users
among 10 and 20 users under the temporal share constraints of
5% and 3%, respectively. Assume that the average feasible rates
of user 1, user 2, and user 3 are 200, 300, and 800 (kbps), re-
spectively, and the ratio of 200 and 800 (kbps) users among the
total users is 30% and the ratio of 300 (kbps) users is 40%.
The ratio of 200 and 800 (kbps) users is 30% and the ratio of
300 (kbps) users is 40%. The results confirm that our scheduler
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Fig. 2. Convergence of the temporal share between three users with
20% of the slot requirement each.
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Fig. 3. Convergence of Lagrange multipliers for three users with 20% of
the slot requirement each.
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Fig. 4. Convergence of the average throughputs between three users
with 150 kbps of the minimum throughput requirement each.

meets each user’s QoS requirements successfully and the con-
vergence speed is fast enough.

C. Discussion

From the simulation results, we observed that our scheduler
maximizes the total utility and guarantees each user’s QoS re-
quirements, even when each user has different QoS require-
ments. Although our scheduler proved to be optimal, the op-
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Fig. 5. Convergence of Lagrange multipliers for three users with 150 kbps
of the minimum throughput requirement each.
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Fig. 6. Convergence of the throughput-share between three users with
20% of the throughput-share requirement each.
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Fig. 7. Convergence of the Lagrange multipliers for three users with 20%
of the throughput-share requirement each.

timal value does not converge if there are too many users in the
system. Therefore, we need an admission control scheme that
allows a limited number of users into the system, thereby guar-
anteeing each accepted user’s QoS.

An advantage of our opportunistic scheduling is that its op-
timality is independent of the channel model. Only the mean
and variance of the channel model affect the parameter adapta-
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Fig. 8. Convergence of the temporal share between 10 users with 5% of
the slot requirement each.
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Fig. 9. Convergence of temporal share between 20 users with 3% of the
slot requirement each.

tion. For the Gaussian channel model, we obtained similar re-
sults. The channel model affects the stability of opportunistic
scheduling because the rate distribution for the scheduled slots
depends on the channel model and determines the system capac-
ity. If the sum of required resources exceeds the system capacity,
the opportunistic scheduling becomes unstable.

In our scheduling algorithm, we selected a step sequence §F
by trial and error that is the main factor in determining the speed
of convergence. Finding an appropriate sequence is left for fu-
ture work.

IV. CONCLUSION

In this paper, we proposed an optimal opportunistic scheduler
that maximizes the total utility of a wireless system and meets
each user’s QoS requirements. Our considered QoS require-
ments are temporal share, minimum throughput, and through-
put share. According to the considered scheduling interval, we
considered two types of scheduling. One is the off-line schedul-
ing where the assumption of knowing the channel rates in the
scheduling interval beforehand is used. The other is the oppor-
tunistic scheduling, which considers the current slot information
only. Interestingly, we obtained the same form of optimal sched-
ulers for the two types.

We also developed an adaptive algorithm to find Lagrange
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multipliers for the optimal schedulers. It executes in an iterative
manner and is not very complex. Through mathematic analysis
we proved that the parameter updating algorithm gives conver-
gent values. The speed of convergence can be made fast enough
by some properly chosen step sequences. Through simulations,
we confirmed that our schedulers work well while meeting each
user’s QoS requirements. The contributions of our work are
as follows: 1) Deriving the optimal extended PF scheduling
policies, 2) proving their optimalities considering QoS require-
ments, and 3) proving the convergence of updating algorithms.
We need to work further to create an opportunistic scheduling
system associated with admission control that guarantees each
user’s QoS requirements under heavy load.

APPENDIX

A. Proof of Theorem 1
Proof: The Lagrangian for (10) is given by

M N M
L= Z U (Tm) — Z’Tn (Z Prn — 1)
m= n=1 m=1
.
_mz-_l /\m <__]\7 nZ::lpmn +am>

M M M
- Z Hm (_Tm - bm) - Z ¢m <_'rm +Cm Ti)
m=1 m=1 =1
(40)

where 7, AL, f4m, and ¢y, are the Lagrange multipliers for slot
n and user m, respectively. From Karuch-Kuhn-Tucker (KKT)
conditions, for all n, we have

oL 1 dU, (r
M = ﬁ{_g;a;_m)rmn = N7Tp 4+ A + bmTmn + GmTmn
M <0, pmn=0,
~Tmn Z ¢’zcz} =0, 0<pmn <1, (41)
=1 > O’ Pmn = 17
M
> Pmn—1=0, (42)
m=1
1 N
Am <_N ngl Pmn + am) =0, (43)
1 N
m (‘N ; PrnTmn + bm> =0, (44)
M
¢m <_rm +Cm Zri) = 0; (45)
=1
Am 20, i > 0, > 0. (46)

If a slot is assigned exclusively to a single user, we obtain the
following relation from (41).

{U;n; (Tm:,) + Um +¢m - 77} Tman +Am > N1,
>{U}, (Tm) + tim + &m — T} Tmn + Am, Ym # m2. (47)

That is, KKT conditions éan be met by scheduling the user with
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the largest {U}, (rm) + tim + &m — T} Fmn + Am for slot n,
and this gives a global maximum because this is a convex prob-
lem. O

B. Proof of Theorem 2
Proof: For any feasible scheduling policy @ satisfying the QoS
constraints, we have

M
2 [{Um (7)) + i 61

7r} Ry + /\:‘n] Iig=m}

)
< Z [{Ur/n (Rm ) + o (ri)m } Rm + ’\m} I{Q* ------ arr }
msl
(48)
where EZ is user m’s average throughput obtained by sched-

uler ¢*. Considering the expectations on both sides and manip-
ulating them, we obtain

i HU; (Rm ) + fly + O — ﬂ‘} Rfi + A Pr{Q = m}]

m=1
< 3 HU;n (R ) ol + o —w}ﬁ,?;
AL Pr{Q* = m}] (49)
éfw@%@wﬁ)
ij o[ Pr{Q=m} - an)
- (Pr{Q" =m} — o)
E (o) 08 -5
_Zd)m (Rg 7”*21?’”) - d’m“’ ) 1Qn
Tr=s] 7] (50)

M

& U, (I_%'fi
m=1

M
<= A (Pr{Q=m} - an)

m;l
=2 @n-
m=1

In (49) and (50), we used the conditions as follows:

i)

619}

M 0
- Z M:n (Rm -
mesl

A, (Pr{@Q* =m} — o) =0,
i (R = B ) =0,
HR ! oy
¢, (Rm — TYm Z Rm) =
m=1
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Since @ satisfies the QoS constraints, the inequality becomes

M
U, (R ~-R¥) <o. (52)
> Un (B) (Rn -~ B
Using the vector notations, we get
VURg)Rg —Rg+) <0 (53)
where VU(R) = (U’I(Rl) - Up(Bm)), Rg = (BY,--
R, and Rg- = (ii’1 e - E%). This means that U(R)
has the maximum at R = RQ* 0

C. Proof of Lemma 9

Proof: For updating A, we use (26) which always produces non-
negative values due to maximum function. Before proving the
convergence of the algorithm, we consider a similar algorithm
that does not apply maximum function.

Am,k‘—{-l = /\m,k: + 5[;\ {am - Im,k] (54)

where 6,;\ = 1/k. From the updating algorithm, we can define

Im(N)=E [O‘m - I{Fm(/\;ﬁyﬂ@)?.Ei()\2ﬁaﬂa¢)aj¢m}] - 59

f g, (A) satisfies K-condition, A converges weakly to the
umque solution of the following.

A =T (A). (56)

There are two arbitrary vectors having the relation of A < A

and Ay, = Ay, For these vectors, function F satisfies

>F (MR
=4F_7 )\;R$M?d)

Jj#Em,

j=m.

F; (:\;E,m ¢) (57)

Then, we obtain the following inequality.

<E [am B I{F’m (:\;ﬁ,uyvﬁ)ZFj(I\;ﬁ,u,@,#m}] (58)
()

So, G, (\) satisfies K-condition, and the convergence of (54) is
proved. If the algorithm converges to non-negative value, the
original algorithm (26) converges to the non-negative value,
though then convergence speeds of them may be different. In
the opposite case, the original algorithm converges to zero, so

A

its convergence is proved. g
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