• 제목/요약/키워드: server performance

Search Result 1,690, Processing Time 0.031 seconds

Smoothing DRR: A fair scheduler and a regulator at the same time (Smoothing DRR: 스케줄링과 레귤레이션을 동시에 수행하는 서버)

  • Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2019
  • Emerging applications such as Smart factory, in-car network, wide area power network require strict bounds on the end-to-end network delays. Flow-based scheduler in traditional Integrated Services (IntServ) architecture could be possible solution, yet its complexity prohibits practical implementation. Sub-optimal class-based scheduler cannot provide guaranteed delay since the burst increases rapidly as nodes are passed by. Therefore a leaky-bucket type regulator placed next to the scheduler is being considered widely. This paper proposes a simple server that achieves both fair scheduling and traffic regulation at the same time. The performance of the proposed server is investigated, and it is shown that a few msec delay bound can be achieved even in large scale networks.

Fingerprint-Based Indoor Logistics Location Tracking System (핑거프린트에 기반한 실내 물류 위치추적 시스템)

  • Kim, Doan;Park, Sunghyun;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.898-903
    • /
    • 2020
  • In this paper, we propose an indoor logistic tracking system that identifies the location and inventory of the logistics in the room based on fingerprints. Through this, we constructed the actual infrastructure of the logistics center and designed and implemented the logistics management system. The proposed system collects the signal strength through the location terminal and generates the signal map to locate the goods. The location terminal is composed of a UHF RFID reader and a wireless LAN card, reads the peripheral RFID signal and the signal of the wireless AP, and transmits it to the web server. The web server processes the signal received from the location terminal and stores it in the database, and the user uses the data to produce the signal map. The proposed system combines UHF RFID with existing fingerprinting method to improve performance in the environment of querying multiple objects.

Energy-Efficient MEC Offloading Decision Algorithm in Industrial IoT Environments (산업용 IoT 환경에서 MEC 기반의 에너지 효율적인 오프로딩 결정 알고리즘)

  • Koo, Seolwon;Lim, YuJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.291-296
    • /
    • 2021
  • The development of the Internet of Things(IoT) requires large computational resources for tasks from numerous devices. Mobile Edge Computing(MEC) has attracted a lot of attention in the IoT environment because it provides computational resources geographically close to the devices. Task offloading to MEC servers is efficient for devices with limited battery life and computational capability. In this paper, we assumed an industrial IoT environment requiring high reliability. The complexity of optimization problem in industrial IoT environment with many devices and multiple MEC servers is very high. To solve this problem, the problem is divided into two. After selecting the MEC server considering the queue status of the MEC server, we propose an offloading decision algorithm that optimizes reliability and energy consumption using genetic algorithm. Through experiments, we analyze the performance of the proposed algorithm in terms of energy consumption and reliability.

A Study of Virtual IoT System using Edge Computing (엣지 컴퓨팅 기반 가상 IoT 시스템 연구)

  • Kim, Min-A;Seok, Seung-Joon
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.51-62
    • /
    • 2020
  • Open IoT platform that shares communication infrastructure and provides cloud resources can flexibly reduce development period and cost of smart service. In this paper, as an open IoT platform, we propose a virtual IoT system based on edge computing that implements a virtual IoT device for a physical IoT device and allows service developers to interact with the virtual device. A management server in the edge cloud, near the IoT physical device, manages the creation, movement, and removal of virtual IoT devices corresponding to the physical IoT devices. This paper define the operations of the management server, the physical IoT device, and the virtual IoT device, which are major components of the virtual IoT system, and design the communication protocol required to perform the operations. Finally, through simulations, this paper evaluate the performance of the edge computing based virtual IoT system by confirming that each component performs the defined states and operations as designed.

Design of weighted federated learning framework based on local model validation

  • Kim, Jung-Jun;Kang, Jeon Seong;Chung, Hyun-Joon;Park, Byung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.13-18
    • /
    • 2022
  • In this paper, we proposed VW-FedAVG(Validation based Weighted FedAVG) which updates the global model by weighting according to performance verification from the models of each device participating in the training. The first method is designed to validate each local client model through validation dataset before updating the global model with a server side validation structure. The second is a client-side validation structure, which is designed in such a way that the validation data set is evenly distributed to each client and the global model is after validation. MNIST, CIFAR-10 is used, and the IID, Non-IID distribution for image classification obtained higher accuracy than previous studies.

Analysis of a Queueing Model with a Two-stage Group-testing Policy (이단계 그룹검사를 갖는 대기행렬모형의 분석)

  • Won Seok Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.53-60
    • /
    • 2022
  • In a group-testing method, instead of testing a sample, for example, blood individually, a batch of samples are pooled and tested simultaneously. If the pooled test is positive (or defective), each sample is tested individually. However, if negative (or good), the test is terminated at one pooled test because all samples in the batch are negative. This paper considers a queueing system with a two-stage group-testing policy. Samples arrive at the system according to a Poisson process. The system has a single server which starts a two-stage group test in a batch whenever the number of samples in the system reaches exactly a predetermined size. In the first stage, samples are pooled and tested simultaneously. If the pooled test is negative, the test is terminated. However, if positive, the samples are divided into two equally sized subgroups and each subgroup is applied to a group test in the second stage, respectively. The server performs pooled tests and individual tests sequentially. The testing time of a sample and a batch follow general distributions, respectively. In this paper, we derive the steady-state probability generating function of the system size at an arbitrary time, applying a bulk queuing model. In addition, we present queuing performance metrics such as the offered load, output rate, allowable input rate, and mean waiting time. In numerical examples with various prevalence rates, we show that the second-stage group-testing system can be more efficient than a one-stage group-testing system or an individual-testing system in terms of the allowable input rates and the waiting time. The two-stage group-testing system considered in this paper is very simple, so it is expected to be applicable in the field of COVID-19.

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

A Study on the Multipurpose Golf Putting Range Finder using IR Razer Sensor and Inertial Sensor (IR 레이저 센서 및 관성 센서를 이용한 다목적 골프 퍼팅 거리 측정기에 대한 연구)

  • Min-Seoung Shin;Dae-Woong Kang;Ki-Deok Kim;Ji-Hwan Kim;Chul-Sun Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.669-676
    • /
    • 2023
  • In this paper, a multi-purpose golf putting range finder based on an IR razer sensor and an inertial sensor was designed and made. It was designed to measure distance and slope within a 50m outdoor measurement range for the main purpose of golf putting distance measurement, and at the same time, it is designed to measure temperature information that affects putting. In addition, the distance meter supports house maintenance work by providing length and horizontality measurement values within the indoor 80m measurement range, and provides safety from indoor or vehicle fires by providing indoor temperature measurement values to mobile phones through linkage with the web server. In order to evaluate the accuracy of the proposed method and its interworking performance with a smartphone, a prototype was produced and a web server was built, and the usefulness was confirmed by showing an acceptable error rate within 5% in repeated experiments.

Band Selection Algorithm based on Expected Value for Pixel Classification (픽셀 분류를 위한 기댓값 기반 밴드 선택 알고리즘)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.107-112
    • /
    • 2022
  • In an embedded system such as a drone, it is difficult to store, transfer and analyze the entire hyper-spectral image to a server in real time because it takes a lot of power and time. Therefore, the hyper-spectral image data is transmitted to the server through dimension reduction or compression pre-processing. Feature selection method are used to send only the bands for analysis purpose, and these algorithms usually take a lot of processing time depending on the size of the image, even though the efficiency is high. In this paper, by improving the temporal disadvantage of the band selection algorithm, the time taken 24 hours was reduced to around 60-180 seconds based on the 40000*682 image resolution of 8GB data, and the use of 7.6GB RAM was significantly reduced to 2.3GB using 45 out of 150 bands. However, in terms of pixel classification performance, more than 98% of analysis results were derived similarly to the previous one.

Systematic Research on Privacy-Preserving Distributed Machine Learning (프라이버시를 보호하는 분산 기계 학습 연구 동향)

  • Min Seob Lee;Young Ah Shin;Ji Young Chun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.76-90
    • /
    • 2024
  • Although artificial intelligence (AI) can be utilized in various domains such as smart city, healthcare, it is limited due to concerns about the exposure of personal and sensitive information. In response, the concept of distributed machine learning has emerged, wherein learning occurs locally before training a global model, mitigating the concentration of data on a central server. However, overall learning phase in a collaborative way among multiple participants poses threats to data privacy. In this paper, we systematically analyzes recent trends in privacy protection within the realm of distributed machine learning, considering factors such as the presence of a central server, distribution environment of the training datasets, and performance variations among participants. In particular, we focus on key distributed machine learning techniques, including horizontal federated learning, vertical federated learning, and swarm learning. We examine privacy protection mechanisms within these techniques and explores potential directions for future research.