Port logistics is essential for Korea's economy which heavily rely on international trade. Vast amounts of capital and time are consumed for the operation and development of ports to improve their competitiveness. Therefore, it is important to forecast cargo volume in order to establish the optimum level of construction and development plan. Itemized forecasting is necessary for appropriate port planning, since disaggregate approach is able to provides more realistic solution than aggregate forecasting. We introduce a new time series model which is Two-way Seasonality Multiplied Regressive Model (TSMR) to forecast oil cargo volume, which accounts for a large portion of total cargo volume in Korea. The TSMR model is designed to take into account the characteristics of oil cargo volume which exhibits trends with short and long-term seasonality. To verify the TSMR model, existing forecasting models are also used for a comparison reason. The results shows that the TSMR excels the existing models in terms of forecasting accuracy whereas the TSMR displays weakness in short-term forecasting. In addition, it was shown that the TSMR can be applied to other cargoes that have trends with short- and long-term seasonality through testing applicability of the TSMR.
Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.241-241
/
2012
Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.
We present key issues to consider in estimating damages from price-fixing cases and then apply the procedure addressing those issues to a transportation fuel market. Among the five methods of overcharge calculation, the regression analysis incorporating the yardstick method is the best. If the price equation relates the domestic price to the foreign price and the exchange rate as in the transportation fuel market, the functional form satisfying both logical consistency and modeling flexibility is the log-log functional form. If the data under analysis is of time series in nature, then the ARDL model should be the base model for each market and the regression analysis incorporating the yardstick method combines these ARDL equations to account for inter-market correlation and arrange constant terms and collusion-period dummies across component equations appropriately so as to identify the overcharge parameter. We propose a two-step test for the benchmarked market: (a) conduct market-by-market Spearman or Kendall test for randomness of the individual market price series first and (b) then conduct across-market Friedman test for homogeneity of the market price series. Statistical significance is the minimal requirement to establish the alleged proposition in the world of uncertainty. Between the sensitivity analysis and the model selection process for the best fitting model, the latter is far more important in the economic analysis of damage in price-fixing litigation. We applied our framework to a transportation fuel market and could not reject the null hypothesis of no overcharge.
Journal of the Korean Society of Marine Environment & Safety
/
v.20
no.1
/
pp.33-41
/
2014
Unlike the existing regression analysis, this study anticipated future marine traffic volume using time series analysis and artificial neural network model. Especially, it tried to anticipate future marine traffic volume by applying predictive value through time series analysis on artificial neural network model as an additional input variable. This study used monthly observed values of Incheon port from 1996 to 2013. In order for the verification of the forecasting of the model, value for 2013 is anticipated from the built model with observed values from 1996 to 2012 and a proper model is decided by comparing with the actual observed values. Marine traffic volume of Incheon port showed more traffic than average for May and November by 5.9 % and 4.5 % respectably, and January and August showed less traffic than average by 8.6 % and 4.7 % in 2015. Thus, it is found that Incheon port has difference in monthly traffic volume according to the season. This study can be utilized as a basis to reflect the characteristics of traffic according to the season when investigating marine traffic field observation.
In order to enhance the competitiveness of the container shipping industry and promote its development, based on the empirical analyses using multivariate time series models, this study aims to suggest a few strategies related to the dynamics of the container shipping market. It uses the vector autoregressive (VAR) and vector error correction (VEC) models as analytical methodologies. Additionally, it uses the annual trade volumes, fleets, and freight rates as the dataset. According to the empirical results, we can infer that the most exogenous variable, the trade volume, exerted the highest influence on the total dynamics of the container shipping market. Based on these empirical results, this study suggests some implications for ship investment, freight rate forecasting, and the strategies of shipping firms. Concerning ship investment, since the exogenous trade volume variable contributes most to the uncertainty of freight rates, corporate finance can be considered more appropriate for container ship investment than project finance. Concerning the freight rate forecasting, the VAR and VEC models use the past information and the cointegrating regression model assumes future information, and hence the former models are found better than the latter model. Finally, concerning the strategies of shipping firms, this study recommends the use of cycle-linked repayment scheme and services contract.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.5B
/
pp.397-408
/
2009
In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.
Journal of Korean Tunnelling and Underground Space Association
/
v.8
no.2
/
pp.151-163
/
2006
Although various methods for effective modeling of pre-reinforced zones have been suggested for numerical analysis of large section tunnels, tunnel designers refer to empirical cases and literature reviews rather than engineering methods because ones who use commercial programs are unfamiliar with a macro-scale approach in general. Therefore, this paper suggests a simple micro-scale approach combined with the macro-scale approach to determine equivalent design parameters for effective numerical modeling of pre-reinforced zones in tunnel. This new approach is to determine the equivalent stiffness of pre-reinforced zones with combination of ground, bulb, and steel in series or/and parallel. For verification, 3-D numerical results from the suggested approach are compared with those of a realistic model. The comparison suggests that two cases make best approximation to a realistic solution: One is related to the series-parallel stiffness system (hereafter SPSS) in which bulb and steel are coupled in parallel and then connected to the ground in series, and the other is the series stiffness system (hereafter SSS) in which only bulb and steel are coupled in series. The SPSS is recommended for stiffness calculation of pre-reinforced zones because the SSS is inconvenient and time-consuming. The SPSS provides slightly bigger vertical displacement at tunnel crown in weathered rock than other cases and give almost identical results to a realistic model for horizontal displacement at tunnel spring line and ground surface settlement. Displacement trends on weathered rock and weathered soil are similar. The SPSS which is suggested in this paper represents the behavior mechanism of pre-reinforced area effectively.
A multi-Gaussian kriging approach extended to space-time domain is presented for uncertainty modeling as well as time-series mapping of environmental variables. Within a multi-Gaussian framework, normal score transformed environmental variables are first decomposed into deterministic trend and stochastic residual components. After local temporal trend models are constructed, the parameters of the models are estimated and interpolated in space. Space-time correlation structures of stationary residual components are quantified using a product-sum space-time variogram model. The ccdf is modeled at all grid locations using this space-time variogram model and space-time kriging. Finally, e-type estimates and conditional variances are computed from the ccdf models for spatial mapping and uncertainty analysis, respectively. The proposed approach is illustrated through a case of time-series Particulate Matter 10 ($PM_{10}$) concentration mapping in Incheon Metropolitan city using monthly $PM_{10}$ concentrations at 13 stations for 3 years. It is shown that the proposed approach would generate reliable time-series $PM_{10}$ concentration maps with less mean bias and better prediction capability, compared to conventional spatial-only ordinary kriging. It is also demonstrated that the conditional variances and the probability exceeding a certain thresholding value would be useful information sources for interpretation.
Lee, Kwang Sub;Eom, Jin Ki;Moon, Dae Seop;Yang, Keun Yul;Lee, Jun
Journal of Korean Society of Transportation
/
v.32
no.1
/
pp.13-26
/
2014
Depending most of its energy sources on foreign countries, Korea efforts to reduce energy consumption in transportation. While studies on the relationship between gas price and transportation demand are many in number, most previous studies have focused on automobile and Seoul. This study analyzes the impact of gas price on transit (bus and subway) demand using monthly data and for various metropolitan areas (Seoul, Busan, Daejeon, Daegu and Gwangju). The research utilizes a time-series model and a multiple regression model, and calculates modal demand elasticities of gas price. The result shows that elasticities of subway demand with respect to gas price is higher than those of bus demand. In addition, elasticities of predominantly automobile cities are more likely to be more sensitive to gas price than those of cities with well-structured transit system.
Purpose - The objective of this paper is to discover if there exists a relationship between the economic index and distribution industry index in Korean. Because of the distribution industry boom in the recent years, a lot of interest in the relationship between the economic index and distribution industry index in Korean and the economy has been generated. This article examine on the mutual influence between economic index and distribution industry index in Korean. Research design, data, and methodology - For this purpose, we use the vector-auto regression model, impulse response function and variance decomposition of the economic index and distribution industry index, Granger causality test using weekly data on the economic index and distribution industry price index in korea. The sample period is covering from January 2, 2010 to August 31, 2019. The VAR model can also be linked to cointegration analysis. Cointegration Analysis makes possible to find a mechanism causing x and y to move around a long-run equilibrium (Engle and Granger, 1987). This equilibrium means that external shocks may separate the series temporarily at any particular time, but there will be an overall tendency towards some type of long-run equilibrium. If variables are found to have this tendency they are said to be cointegrated and a long-run relationship between these series is established. These econometric tools have been applied widely into economics and business areas to analyze intertemporal linkages between different time series. Results - This research showed following main results. First, from the basic statistic analysis of the economic index and distribution industry index in Korean, the economic index and the distribution industry index in korea have unit roots. Second, there is at least one cointegration between the economic index and distribution industry index in Korean. Finally, the correlation between of the economic index and the distribution industry index in korea is (+) 0.528876. Conclusions - We find that the distribution industry price index Granger cause the economic index in korea. As a consequence, the distribution industry index affect the economic index in Korean. The distribution industry index to the economic index is stronger than that from the economic index to the distribution industry index.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.