• Title/Summary/Keyword: series model

Search Result 5,386, Processing Time 0.034 seconds

An introduction of new time series forecasting model for oil cargo volume (유류화물 항만물동량 예측모형 개발 연구)

  • Kim, Jung-Eun;Oh, Jin-Ho;Woo, Su-Han
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.1
    • /
    • pp.81-98
    • /
    • 2018
  • Port logistics is essential for Korea's economy which heavily rely on international trade. Vast amounts of capital and time are consumed for the operation and development of ports to improve their competitiveness. Therefore, it is important to forecast cargo volume in order to establish the optimum level of construction and development plan. Itemized forecasting is necessary for appropriate port planning, since disaggregate approach is able to provides more realistic solution than aggregate forecasting. We introduce a new time series model which is Two-way Seasonality Multiplied Regressive Model (TSMR) to forecast oil cargo volume, which accounts for a large portion of total cargo volume in Korea. The TSMR model is designed to take into account the characteristics of oil cargo volume which exhibits trends with short and long-term seasonality. To verify the TSMR model, existing forecasting models are also used for a comparison reason. The results shows that the TSMR excels the existing models in terms of forecasting accuracy whereas the TSMR displays weakness in short-term forecasting. In addition, it was shown that the TSMR can be applied to other cargoes that have trends with short- and long-term seasonality through testing applicability of the TSMR.

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

Theoretical and Empirical Issues in Conducting an Economic Analysis of Damage in Price-Fixing Litigation: Application to a Transportation Fuel Market (담합관련 손해배상 소송의 경제분석에서 고려해야 할 이론 및 실증적 쟁점: 수송용 연료시장에의 적용)

  • Moon, Choon-Geol
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.187-224
    • /
    • 2014
  • We present key issues to consider in estimating damages from price-fixing cases and then apply the procedure addressing those issues to a transportation fuel market. Among the five methods of overcharge calculation, the regression analysis incorporating the yardstick method is the best. If the price equation relates the domestic price to the foreign price and the exchange rate as in the transportation fuel market, the functional form satisfying both logical consistency and modeling flexibility is the log-log functional form. If the data under analysis is of time series in nature, then the ARDL model should be the base model for each market and the regression analysis incorporating the yardstick method combines these ARDL equations to account for inter-market correlation and arrange constant terms and collusion-period dummies across component equations appropriately so as to identify the overcharge parameter. We propose a two-step test for the benchmarked market: (a) conduct market-by-market Spearman or Kendall test for randomness of the individual market price series first and (b) then conduct across-market Friedman test for homogeneity of the market price series. Statistical significance is the minimal requirement to establish the alleged proposition in the world of uncertainty. Between the sensitivity analysis and the model selection process for the best fitting model, the latter is far more important in the economic analysis of damage in price-fixing litigation. We applied our framework to a transportation fuel market and could not reject the null hypothesis of no overcharge.

A Prediction of Marine Traffic Volume using Artificial Neural Network and Time Series Analysis (인공신경망과 시계열 분석을 이용한 해상교통량 예측)

  • Yoo, Sang-Lok;Kim, Jong-Su;Jeong, Jung-Sik;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • Unlike the existing regression analysis, this study anticipated future marine traffic volume using time series analysis and artificial neural network model. Especially, it tried to anticipate future marine traffic volume by applying predictive value through time series analysis on artificial neural network model as an additional input variable. This study used monthly observed values of Incheon port from 1996 to 2013. In order for the verification of the forecasting of the model, value for 2013 is anticipated from the built model with observed values from 1996 to 2012 and a proper model is decided by comparing with the actual observed values. Marine traffic volume of Incheon port showed more traffic than average for May and November by 5.9 % and 4.5 % respectably, and January and August showed less traffic than average by 8.6 % and 4.7 % in 2015. Thus, it is found that Incheon port has difference in monthly traffic volume according to the season. This study can be utilized as a basis to reflect the characteristics of traffic according to the season when investigating marine traffic field observation.

Analysis of Container Shipping Market Using Multivariate Time Series Models (다변량 시계열 모형을 이용한 컨테이너선 시장 분석)

  • Ko, Byoung-Wook;Kim, Dae-Jin
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.3
    • /
    • pp.61-72
    • /
    • 2019
  • In order to enhance the competitiveness of the container shipping industry and promote its development, based on the empirical analyses using multivariate time series models, this study aims to suggest a few strategies related to the dynamics of the container shipping market. It uses the vector autoregressive (VAR) and vector error correction (VEC) models as analytical methodologies. Additionally, it uses the annual trade volumes, fleets, and freight rates as the dataset. According to the empirical results, we can infer that the most exogenous variable, the trade volume, exerted the highest influence on the total dynamics of the container shipping market. Based on these empirical results, this study suggests some implications for ship investment, freight rate forecasting, and the strategies of shipping firms. Concerning ship investment, since the exogenous trade volume variable contributes most to the uncertainty of freight rates, corporate finance can be considered more appropriate for container ship investment than project finance. Concerning the freight rate forecasting, the VAR and VEC models use the past information and the cointegrating regression model assumes future information, and hence the former models are found better than the latter model. Finally, concerning the strategies of shipping firms, this study recommends the use of cycle-linked repayment scheme and services contract.

Development of a Stochastic Precipitation Generation Model for Generating Multi-site Daily Precipitation (다지점 일강수 모의를 위한 추계학적 강수모의모형의 구축)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.397-408
    • /
    • 2009
  • In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.

Equivalent Design Parameter Determination for Effective Numerical Modeling of Pre-reinforced Zones in Tunnel (터널 사전보강 영역의 효과적 수치해석을 위한 등가 물성치 결정 기법)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2006
  • Although various methods for effective modeling of pre-reinforced zones have been suggested for numerical analysis of large section tunnels, tunnel designers refer to empirical cases and literature reviews rather than engineering methods because ones who use commercial programs are unfamiliar with a macro-scale approach in general. Therefore, this paper suggests a simple micro-scale approach combined with the macro-scale approach to determine equivalent design parameters for effective numerical modeling of pre-reinforced zones in tunnel. This new approach is to determine the equivalent stiffness of pre-reinforced zones with combination of ground, bulb, and steel in series or/and parallel. For verification, 3-D numerical results from the suggested approach are compared with those of a realistic model. The comparison suggests that two cases make best approximation to a realistic solution: One is related to the series-parallel stiffness system (hereafter SPSS) in which bulb and steel are coupled in parallel and then connected to the ground in series, and the other is the series stiffness system (hereafter SSS) in which only bulb and steel are coupled in series. The SPSS is recommended for stiffness calculation of pre-reinforced zones because the SSS is inconvenient and time-consuming. The SPSS provides slightly bigger vertical displacement at tunnel crown in weathered rock than other cases and give almost identical results to a realistic model for horizontal displacement at tunnel spring line and ground surface settlement. Displacement trends on weathered rock and weathered soil are similar. The SPSS which is suggested in this paper represents the behavior mechanism of pre-reinforced area effectively.

  • PDF

Time-series Mapping and Uncertainty Modeling of Environmental Variables: A Case Study of PM10 Concentration Mapping (시계열 환경변수 분포도 작성 및 불확실성 모델링: 미세먼지(PM10) 농도 분포도 작성 사례연구)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.249-264
    • /
    • 2011
  • A multi-Gaussian kriging approach extended to space-time domain is presented for uncertainty modeling as well as time-series mapping of environmental variables. Within a multi-Gaussian framework, normal score transformed environmental variables are first decomposed into deterministic trend and stochastic residual components. After local temporal trend models are constructed, the parameters of the models are estimated and interpolated in space. Space-time correlation structures of stationary residual components are quantified using a product-sum space-time variogram model. The ccdf is modeled at all grid locations using this space-time variogram model and space-time kriging. Finally, e-type estimates and conditional variances are computed from the ccdf models for spatial mapping and uncertainty analysis, respectively. The proposed approach is illustrated through a case of time-series Particulate Matter 10 ($PM_{10}$) concentration mapping in Incheon Metropolitan city using monthly $PM_{10}$ concentrations at 13 stations for 3 years. It is shown that the proposed approach would generate reliable time-series $PM_{10}$ concentration maps with less mean bias and better prediction capability, compared to conventional spatial-only ordinary kriging. It is also demonstrated that the conditional variances and the probability exceeding a certain thresholding value would be useful information sources for interpretation.

An Impact of Gas Prices on Transit Demand Using a Time-series Analysis and a Regression Analysis (시계열 및 회귀분석을 활용한 휘발유가격의 광역권별·수단별 대중교통수요 영향력 비교분석)

  • Lee, Kwang Sub;Eom, Jin Ki;Moon, Dae Seop;Yang, Keun Yul;Lee, Jun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.1
    • /
    • pp.13-26
    • /
    • 2014
  • Depending most of its energy sources on foreign countries, Korea efforts to reduce energy consumption in transportation. While studies on the relationship between gas price and transportation demand are many in number, most previous studies have focused on automobile and Seoul. This study analyzes the impact of gas price on transit (bus and subway) demand using monthly data and for various metropolitan areas (Seoul, Busan, Daejeon, Daegu and Gwangju). The research utilizes a time-series model and a multiple regression model, and calculates modal demand elasticities of gas price. The result shows that elasticities of subway demand with respect to gas price is higher than those of bus demand. In addition, elasticities of predominantly automobile cities are more likely to be more sensitive to gas price than those of cities with well-structured transit system.

An Empirical Study on Mutual Influence between Economic Index and Distribution Industry in Korean (한국 유통산업이 한국 경제에 미치는 상호영향력에 관한 실증적 연구)

  • YIM, Byung-Jin
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.9
    • /
    • pp.53-60
    • /
    • 2019
  • Purpose - The objective of this paper is to discover if there exists a relationship between the economic index and distribution industry index in Korean. Because of the distribution industry boom in the recent years, a lot of interest in the relationship between the economic index and distribution industry index in Korean and the economy has been generated. This article examine on the mutual influence between economic index and distribution industry index in Korean. Research design, data, and methodology - For this purpose, we use the vector-auto regression model, impulse response function and variance decomposition of the economic index and distribution industry index, Granger causality test using weekly data on the economic index and distribution industry price index in korea. The sample period is covering from January 2, 2010 to August 31, 2019. The VAR model can also be linked to cointegration analysis. Cointegration Analysis makes possible to find a mechanism causing x and y to move around a long-run equilibrium (Engle and Granger, 1987). This equilibrium means that external shocks may separate the series temporarily at any particular time, but there will be an overall tendency towards some type of long-run equilibrium. If variables are found to have this tendency they are said to be cointegrated and a long-run relationship between these series is established. These econometric tools have been applied widely into economics and business areas to analyze intertemporal linkages between different time series. Results - This research showed following main results. First, from the basic statistic analysis of the economic index and distribution industry index in Korean, the economic index and the distribution industry index in korea have unit roots. Second, there is at least one cointegration between the economic index and distribution industry index in Korean. Finally, the correlation between of the economic index and the distribution industry index in korea is (+) 0.528876. Conclusions - We find that the distribution industry price index Granger cause the economic index in korea. As a consequence, the distribution industry index affect the economic index in Korean. The distribution industry index to the economic index is stronger than that from the economic index to the distribution industry index.