DOI QR코드

DOI QR Code

An Impact of Gas Prices on Transit Demand Using a Time-series Analysis and a Regression Analysis

시계열 및 회귀분석을 활용한 휘발유가격의 광역권별·수단별 대중교통수요 영향력 비교분석

  • Lee, Kwang Sub (Transport Systems Research Team, Korea Railroad Research Institute) ;
  • Eom, Jin Ki (Transport Systems Research Team, Korea Railroad Research Institute) ;
  • Moon, Dae Seop (Convergence Technology Research Team, Korea Railroad Research Institute) ;
  • Yang, Keun Yul (Green Transport and Logistics Institute, Korea Railroad Research Institute) ;
  • Lee, Jun (Transport Systems Research Team, Korea Railroad Research Institute)
  • 이광섭 (한국철도기술연구원 교통체계분석연구단) ;
  • 엄진기 (한국철도기술연구원 교통체계분석연구단) ;
  • 문대섭 (한국철도기술연구원 융복합연구단) ;
  • 양근율 (한국철도기술연구원 녹색교통물류시스템공학연구소) ;
  • 이준 (한국철도기술연구원 교통체계분석연구단)
  • Received : 2013.09.23
  • Accepted : 2013.12.26
  • Published : 2014.02.28

Abstract

Depending most of its energy sources on foreign countries, Korea efforts to reduce energy consumption in transportation. While studies on the relationship between gas price and transportation demand are many in number, most previous studies have focused on automobile and Seoul. This study analyzes the impact of gas price on transit (bus and subway) demand using monthly data and for various metropolitan areas (Seoul, Busan, Daejeon, Daegu and Gwangju). The research utilizes a time-series model and a multiple regression model, and calculates modal demand elasticities of gas price. The result shows that elasticities of subway demand with respect to gas price is higher than those of bus demand. In addition, elasticities of predominantly automobile cities are more likely to be more sensitive to gas price than those of cities with well-structured transit system.

국내에서 소비되는 에너지의 대부분을 해외에 의존하고 있는 우리나라는 교통부문에서도 에너지 절감을 위해 많은 노력을 하고 있다. 휘발유가격과 교통수요와의 관계는 국내외적으로 꾸준히 연구되어 왔으나 국내 선행연구는 승용차 및 수도권 중심으로 연구되어 왔다. 본 연구에서는 휘발유가격이 대중교통수요에 미치는 영향을 분석하며 월별 자료를 활용하여 대중교통 수단별(버스, 도시철도) 및 광역권별(수도권, 부산, 대전, 대구, 광주)로 실증적으로 비교분석했다. 분석을 위해 시계열모형과 다중회귀모형을 사용하였으며 회귀모형의 계수를 활용하여 유가에 대한 대중교통 수요의 탄력성을 비교하였다. 유가에 대한 수요탄력성이 버스보다 도시철도가 높게 나타났고, 대중교통체계가 잘 갖춰진 수도권보다 승용차 의존적인 지방 광역권이 유가에 더 민감한 것으로 나타났다.

Keywords

References

  1. Currie G., Phung J. (2007), Transit Ridership, Auto Gas Prices and World Events - New Drivers of Change? TRB 86th Annual Meeting.
  2. Currie G., Phung J. (2008), Understanding Links Between Transit Ridership and Automobile Gas Prices - U.S. and Australian Evidence, TRB 87th Annual Meeting.
  3. Haire A. R., Machemehl R. B. (2007), Impact of Rising Fuel Prices on U.S. Transit Ridership, Transportation Research Record 1992, 11-19. https://doi.org/10.3141/1992-02
  4. KEEI (2012), Yearbook of Energy Statistics, 31, Korea Energy Economics Institute.
  5. Kennedy D. (2013), Econometric Models for Public Transport Forecasting, NZ Transport Agency Research Report 518.
  6. Kim H. K., Kim T. S. (2003), Time-series Analysis and Forecast Theory, Kyungmoon Press.
  7. Lane B. W. (2008), Gasoline Costs, Public Transit, and Transport Sustainability, Selected Works, University of Texas at El Paso.
  8. Lane B. W. (2012), Time-series Analysis of Gasoline Prices and Public Transportation in US Metropolitan Areas, Journal of Transport Geography, 22, 221-235. https://doi.org/10.1016/j.jtrangeo.2011.10.006
  9. Lee D. K. (2002), Understanding of Forecasting Methods, SPSS Academy.
  10. Lee J. M., Han S. Y., Lee C. W. (2009), Oil Price and Travel Demand, KOTI Policy Research.
  11. Lee S. W., Han S. Y., Park S. S. (2005), Effectiveness Analysis on Public Transit User Support Policy - A Quantitative Analysis of Commuting Cost Subsidy Program, KOTI Policy Research.
  12. Lee S. W., Park J. H. (1999), Estimation of Urban Transport Demand Elasticity with Respect to Price, Income and Service Levels, KOTI Policy Research.
  13. Maley D., Weinberger R. (2009), Rising Gas Price and Transit Ridership: A Philadelphia Case Study, TRB 88th Annual Meeting.
  14. Mattson J. (2008), Effects of Gasoline Prices on Bus Ridership for Different Types of Transit System, Journal of the Transportation Research Forum, 47(3), 5-21.
  15. Rose G. (1986), Transit Passenger Response: Short and Long Term Elasticities Using Time Series Analysis, Transportation, 13, 131-141. https://doi.org/10.1007/BF00165544
  16. Yanmaz-Tuzel O., Ozbay K. (2010), Impacts of Gasoline Prices on New Jersey Transit Ridership, TRB 89th Annual Meeting.

Cited by

  1. Analysis on the Relationship between the Fine Dust Concentration and Subway Ridership for the Evaluation of Fine Dust Response Policies vol.54, pp.4, 2014, https://doi.org/10.17208/jkpa.2019.08.54.4.79