• Title/Summary/Keyword: series model

Search Result 5,386, Processing Time 0.034 seconds

Hierarchical time series forecasting with an application to traffic accident counts (계층적 시계열 분석을 이용한 지역별 교통사고 발생건수 예측)

  • Lee, Jooeun;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.181-193
    • /
    • 2017
  • The paper introduces bottom-up and optimal combination methods that can analyze and forecast hierarchical time series. These methods allow forecasts at lower levels to be summed consistently to upper levels without any ad-hoc adjustment. They can also potentially improve forecast performance in comparison to independent forecasts. We forecast regional traffic accident counts as time series data in order to identify efficiency gains from hierarchical forecasting. We observe that bottom-up or optimal combination methods are superior to independent methods in terms of forecast accuracy.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

A Study on Hydraulic Characteristics of the Curved Channel in the Downstream of Dam (댐 하류 만곡부 하천에 대한 수리학적 특성 연구)

  • Choi, Han-Kyu;Beak, Hyo-Seon;Lee, Kye-Yu
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.3-14
    • /
    • 2005
  • In order to accurately analyze the detailed hydraulic characteristics of the curved channel in the downstream of dam with the hydraulic structures such as bridge piers, RMA2 model which is one of two-dimensional models is applied to ChunCheon dam downstream curved channel. A series of hydraulic model tests are carried out for comparison studies. HEC-RAS model is also applied to the same site. There are no errors when velocities and water levels resulted from HEC-RAS model RMA2 model are compared with those of hydraulic model test on the straight channel. But, it is found that results of RMA2 model have a better agreement with those of hydraulic model test than those of HEC-RAS model on the curved channel with bridge piers. Additionally, RMA2 model can be predicted the eddy phenomena around bridge piers of the curved channel.

  • PDF

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

Analysis of the Effects According to Changes in Impedance and Electrical Equivalent Circuit Modeling of a SONAR Transducer Considering Dual Resonance (이중 공진을 고려한 소나 트랜스듀서의 전기적 등가회로 모델링 및 임피던스 변동에 따른 효과 분석)

  • Mok, Hyung-Soo;Choi, Jae-Hyuk;Han, Soo-Hee;Park, Sang-Zoon;Kim, Sung-Joo;Heo, Jun-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.144-151
    • /
    • 2015
  • The present study proposes a method for modeling a SONAR transducer with dual resonance. The Butterworth van-Dyke (BVD) model, a conventional SONAR transducer modeling method, can model only one resonance point. Hence, to address its disadvantage and to model the dual resonance, a dual resonance BVD model consisting of two serial BVD models is proposed. The two BVD models are connected in a series, and each simulate resonance at low frequency and high frequency, which allows the modeling of two resonance points. Eight elements compose the equivalent circuit by connecting the BVD models in a series, which is twice as great as that of the existing BVD model. The element value of the dual resonance BVD model is extracted by using the particle swarm optimization method. Analysis was also performed to identify the effects of changes in the value of elements that compose the equivalent circuit on the impedance characteristics of the equivalent circuit through simulation in which element values varied.

A development of multisite hourly rainfall simulation technique based on neyman-scott rectangular pulse model (Neyman-Scott Rectangular Pulse 모형 기반의 다지점 강수모의 기법 개발)

  • Moon, Jangwon;Kim, Janggyeong;Moon, Youngil;Kwon, Hyunhan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.913-922
    • /
    • 2016
  • A long-term precipitation record is typically required for establishing the reliable water resources plan in the watershed. However, the observations in the hourly precipitation data are not always consistent and there are missing values within the time series. This study aims to develop a hourly rainfall simulator for extending rainfall data, based on the well-known Neyman-Scott Rectangular Pulse Model (NSRPM). Moreover, this study further suggests a multisite hourly rainfall simulator to better reproduce areal rainfalls for the watershed. The proposed model was validated with a network of five weather stations in the Uee-stream watershed in Seoul. The proposed model appeared a reasonable result in terms of reproducing most of the statistics (i.e. mean, variance and lag-1 autocovariance) of the rainfall time series at various aggregation levels and the spatial coherence over the weather stations.

Relationship among Degree of Time-delay, Input Variables, and Model Predictability in the Development Process of Non-linear Ecological Model in a River Ecosystem (비선형 시계열 하천생태모형 개발과정 중 시간지연단계와 입력변수, 모형 예측성 간 관계평가)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Yoon, Ju-Duk;La, Geung-Hwan;Kim, Hyun-Woo;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.161-167
    • /
    • 2010
  • In this study, we implemented an experimental approach of ecological model development in order to emphasize the importance of input variable selection with respect to time-delayed arrangement between input and output variables. Time-series modeling requires relevant input variable selection for the prediction of a specific output variable (e.g. density of a species). Inadequate variable utility for input often causes increase of model construction time and low efficiency of developed model when applied to real world representation. Therefore, for future prediction, researchers have to decide number of time-delay (e.g. months, weeks or days; t-n) to predict a certain phenomenon at current time t. We prepared a total of 3,900 equation models produced by Time-Series Optimized Genetic Programming (TSOGP) algorithm, for the prediction of monthly averaged density of a potamic phytoplankton species Stephanodiscus hantzschii, considering future prediction from 0- (no future prediction) to 12-months ahead (interval by 1 month; 300 equations per each month-delay). From the investigation of model structure, input variable selectivity was obviously affected by the time-delay arrangement, and the model predictability was related with the type of input variables. From the results, we can conclude that, although Machine Learning (ML) algorithms which have popularly been used in Ecological Informatics (EI) provide high performance in future prediction of ecological entities, the efficiency of models would be lowered unless relevant input variables are selectively used.

Drought Analysis of Nakdong River Basin Based on Multivariate Stochastic Models (다변량 추계학적 모형을 이용한 낙동강 유역의 가뭄해석에 관한 연구)

  • Heo, Jun-Haeng;Kim, Gyeong-Deok;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.155-163
    • /
    • 1997
  • In this study, drought analysis of annual flows of Jindong, Hyunpoong, and Waekwan stations located at Nakdong River Basins was performed based on multivariate stochastic models. The stochastic models used were multivariate autoregressive model (MAR) and multivariate contemporaneous (MCAR) model. MCAR(1) and MAR(1) models were selected to be a appropriate models for these stations based on skewness test of normality, test of uncorrelated residuals, and correlograms of the residual series of each model. The statistics generated by MCAR(1) model and MAR(1) model resembled very closely those computed from historical series. The drought characteristics such as run len호, run sum, and run intensity were fairly well reproduced for the various lengths of generated annual flows based on the MCAR(1) and MAR(1) models. Thus, these drought characteristics may give the important informations in planning mid or long term water supplying systems.

  • PDF