• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.036 seconds

Some Model Solute Affinity for a Tactic p-HEMA Membranes by K$_D$ Measurement

  • Lee, Eun-Hee;Jeon, Sang-Il;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.5
    • /
    • pp.175-178
    • /
    • 1984
  • Two series of membranes have been prepared by postcrosslinking highly syndiotactic and isotactic poly (2-hydroxyethyl methacrylate), P(HEMA). The crosslinker used was hexamethylene diisocyante (HMDIC). The distribution coefficients (K$_{D2}$) of the model solutes such as urea (and thiourea), their derivatives, homologous alcohol series and amide sreies in water-swollen tactic P(HEMA) membranes at $25^{\circ}C$ were mesaured. In addition, the concentration effects of acetamide and butyramid were also measured. On the basis of hydrophobic interaction and the structural factors of tactic P(HEMA) membranes, the hydrophobic adsorption of the solutes in the polymer matrix were discussed. The results showed that the more hydrphobic the solute is, the higher the $K_{D2}$ value is. And the polymer conformation also affects the distribution of solvents.

Evaluation of thermal conductivity in REBCO coated conductor

  • Yong-Ju, Hong;Sehwan, In;Hyobong, Kim;Hankil, Yeom
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.78-83
    • /
    • 2022
  • REBCO coated conductors are widely used for HTS power application, high magnetic field magnet application, and etc. A thermal stability of the REBCO conductor is essential for the operation of HTS-based device, and thermal conductivities of the conductor are relevant parameters for modeling cryogenic heat transfer. REBCO conductors consist of a REBCO layer, copper layers for electrical stabilization and a hastelloy substrate. At cryogenic temperature, thermal conductivity of copper and silver strongly depend on the purity of the material and the intensity of the magnetic field. In this study, thermal conductivities of the laminated composite structure of REBCO conductor are evaluated by using the thermal network model and the multidimensional heat conduction analysis. As a result, the thermal network model is applicable to REBCO conductors configured in series or parallel alone and multidimensional heat conduction analysis is necessary for complex cases of series and parallel configuration.

Detection of Chatter Vibration in End-Mill Process by Neural Network Methodology (신경회로망을 이용한 엔드-밀 공정에서의 채터검지)

  • Chung, Eui-Sik;Ko, Joon-Bin;Kim, Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.149-156
    • /
    • 1995
  • This paper presents a method of detecting chatter vibration in end-mill process. The detecting system consists of an adaptive signal processing scheme which uses an autore- gressive time-series model and a neural network is proposed and is verified its effectiveness by using acceleration and cutting force signals recorded during slotting in end-mill operations. Expeerimental results indicate that the proposed system provides excellent detection when chatter is occured within the ranges of cutting conditions considered in this study and an effectiveness of the integration of signals is confirmed.

  • PDF

A Development of Water Demand Forecasting Model Based on Wavelet Transform and Support Vector Machine (Wavelet Transform 방법과 SVM 모형을 활용한 상수도 수요량 예측기법 개발)

  • Kwon, Hyun-Han;Kim, Min-Ji;Kim, Oon Gi
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1187-1199
    • /
    • 2012
  • A hybrid forecasting scheme based on wavelet decomposition coupled to a support vector machine model is presented for water demand series that exhibit nonlinear behavior. The use of wavelet transform followed by the SVM model of each leading component is explored as a model for water demand data. The proposed forecasting model yields better results than a traditional ARIMA time series forecasting model in terms of self-prediction problem as well as reproducing the properties of the observed water demand data by making use of the advantages of wavelet transform and SVM model. The proposed model can be used to substantially and significantly improve the water demand forecasting and utilized in a real operation.

Synthetic Streamflow Generation Using Autoregressive Modeling in the Upper Nakdong River Basin

  • Rubio, Christabel Jane P.;Oh, Kuk-Ryul;Ryu, Jae-H.;Jeong, Sang-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • The analysis and synthesis of various types of hydrologic variables such as precipitation, surface runoff, and discharge are usually required in planning and management of water resources. These hydrologic variables are mostly represented using stochastic models. One of which is the autoregressive model, that gives promising results in time series modeling. This study is an application of this model, which aimed to determine the AR model that best represents the historical monthly streamflow of the two gauging stations, namely Andong Dam and Imha Dam, both located in the upper Nakdong River Basin. AR(3) model was found to be the best model for both gauging stations. Parameters of the determined order of AR model ($\phi_1$, $\phi_2$ and $\phi_3$) were also estimated. Using several diagnostic tests, the efficiency of the determined AR(3) model was tested. These tests indicated the accuracy of the determined AR(3) model.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

Beam-Column Element Applicable to Nonlinear Seismic Analysis (비선형 지진 해석을 위한 보-기둥 요소)

  • Kim, Kee Dong;Ko, Man Gi;Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.557-578
    • /
    • 1997
  • The objective of the study in this paper was to develop a beam-column element to model members with purely flexural yielding, as well as members with yielding under combined flexure and axial force during severe earthquake ground motins. The developed element can be considered as an one-component series hinge type model. It has the capability to model plastic axial deformation and changes in axial stiffness, and employs hardening rules to handle monotonic, cyclic or arbitrary loading. In general, when compared to experimental results and fiber model predictions, the element showed significantly better performance than the bilinear hinger model and could properly model the beam-column behavior of bare steel members in moment resisting frames. The developed element can more accurately predict local deformation demands and overall responses of structural systems under earthquake loadings than the bilinear hinge element.

  • PDF

A Comparative Study of Deep Learning-Based Anomaly Detection Methods for Time-Series Data in Complex Embedded Systems (복합 임베디드 시스템 시계열 데이터를 활용한 딥러닝 이상 탐지 방법 비교 연구)

  • Hyun-Jae Im;Sung-Jae Han;Joo-Sung Park;Gi-Sung An;Ju-Hyeon Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.5
    • /
    • pp.66-72
    • /
    • 2024
  • Complex embedded systems such as aircraft can lead to serious hazards when failures occur. This paper presents an anomaly detection model using deep learning techniques such as LSTM and 1D CNN on time-series datasets generated from complex embedded systems and compares inference results. Results showed that the 1D CNN model outperformed the LSTM model. Compared with the inference performance of a two-dimensional CNN model created in a previous study (Anomaly Detections Model of Aviation System by CNN), the two-dimensional CNN model had higher accuracy and recall. However, the 1-dimensional CNN model had faster inference speed. We can conclude that the 1D CNN model is more suitable than the LSTM model for anomaly detection in complex embedded systems that require real-time anomaly detection.

Detecting Nonlinearity of Hydrologic Time Series by BDS Statistic and DVS Algorithm (BDS 통계와 DVS 알고리즘을 이용한 수문시계열의 비선형성 분석)

  • Choi, Kang Soo;Kyoung, Min Soo;Kim, Soo Jun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.163-171
    • /
    • 2009
  • Classical linear models have been generally used to analyze and forecast hydrologic time series. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. In recent, the BDS (Brock-Dechert-Scheinkman) statistic instead of conventional techniques has been used for detecting nonlinearity of time series. The BDS statistic was derived from the statistical properties of the correlation integral which is used to analyze chaotic system and has been effectively used for distinguishing nonlinear structure in dynamic system from random structures. DVS (Deterministic Versus Stochastic) algorithm has been used for detecting chaos and stochastic systems and for forecasting of chaotic system. This study showed the DVS algorithm can be also used for detecting nonlinearity of the time series. In this study, the stochastic and hydrologic time series are analyzed to detect their nonlinearity. The linear and nonlinear stochastic time series generated from ARMA and TAR (Threshold Auto Regressive) models, a daily streamflow at St. Johns river near Cocoa, Florida, USA and Great Salt Lake Volume (GSL) data, Utah, USA are analyzed, daily inflow series of Soyang dam and the results are compared. The results showed the BDS statistic is a powerful tool for distinguishing between linearity and nonlinearity of the time series and DVS plot can be also effectively used for distinguishing the nonlinearity of the time series.

Prediction Model of Real Estate ROI with the LSTM Model based on AI and Bigdata

  • Lee, Jeong-hyun;Kim, Hoo-bin;Shim, Gyo-eon
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Across the world, 'housing' comprises a significant portion of wealth and assets. For this reason, fluctuations in real estate prices are highly sensitive issues to individual households. In Korea, housing prices have steadily increased over the years, and thus many Koreans view the real estate market as an effective channel for their investments. However, if one purchases a real estate property for the purpose of investing, then there are several risks involved when prices begin to fluctuate. The purpose of this study is to design a real estate price 'return rate' prediction model to help mitigate the risks involved with real estate investments and promote reasonable real estate purchases. Various approaches are explored to develop a model capable of predicting real estate prices based on an understanding of the immovability of the real estate market. This study employs the LSTM method, which is based on artificial intelligence and deep learning, to predict real estate prices and validate the model. LSTM networks are based on recurrent neural networks (RNN) but add cell states (which act as a type of conveyer belt) to the hidden states. LSTM networks are able to obtain cell states and hidden states in a recursive manner. Data on the actual trading prices of apartments in autonomous districts between January 2006 and December 2019 are collected from the Actual Trading Price Disclosure System of the Ministry of Land, Infrastructure and Transport (MOLIT). Additionally, basic data on apartments and commercial buildings are collected from the Public Data Portal and Seoul Metropolitan Government's data portal. The collected actual trading price data are scaled to monthly average trading amounts, and each data entry is pre-processed according to address to produce 168 data entries. An LSTM model for return rate prediction is prepared based on a time series dataset where the training period is set as April 2015~August 2017 (29 months), the validation period is set as September 2017~September 2018 (13 months), and the test period is set as December 2018~December 2019 (13 months). The results of the return rate prediction study are as follows. First, the model achieved a prediction similarity level of almost 76%. After collecting time series data and preparing the final prediction model, it was confirmed that 76% of models could be achieved. All in all, the results demonstrate the reliability of the LSTM-based model for return rate prediction.