• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.034 seconds

An Empirical Study on the Consumption Function of Korean Natural Gas for City Gas - Using Time Varying Coefficient Time Series Model - (한국 도시가스용 천연가스의 소비함수에 대한 실증분석 - 시간변동계수(TVC) 시계열모형 활용 -)

  • Kim, Jum-Su;Yang, Chun-Seung;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.318-329
    • /
    • 2011
  • This study focuses on enhancing the accuracy of consumption function of Korean natural gas for city gas. It is using time-series model with time-varying coefficients taking into account the recent abnormal temperature phenomenon and the changing gross domestic product (GDP) as important variables. This study estimates the cointegrating regression model for the long-run estimation and the error correction model for the short-run estimation. The consumption function of Korean natural gas is estimated to be influenced by the time-varying coefficients of GDP and temperature. Using the estimated time-series model with time-varying coefficients, this study forecasts the consumption of natural gas for city gas from July 2011 to December 2012. The consumption in 2011 would be 18,303 thousand tons, which is little different from the imported 18,681 thousand tons. The consumption of natural gas for city gas in 2012 is forecast to be 19,213 thousand tons. The consumption model of this study is needed to extend by considering the relative prices between natural gas and its substitutes, the scale of consumers and others.

Time series analysis for Korean COVID-19 confirmed cases: HAR-TP-T model approach (한국 COVID-19 확진자 수에 대한 시계열 분석: HAR-TP-T 모형 접근법)

  • Yu, SeongMin;Hwang, Eunju
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.239-254
    • /
    • 2021
  • This paper studies time series analysis with estimation and forecasting for Korean COVID-19 confirmed cases, based on the approach of a heterogeneous autoregressive (HAR) model with two-piece t (TP-T) distributed errors. We consider HAR-TP-T time series models and suggest a step-by-step method to estimate HAR coefficients as well as TP-T distribution parameters. In our proposed step-by-step estimation, the ordinary least squares method is utilized to estimate the HAR coefficients while the maximum likelihood estimation (MLE) method is adopted to estimate the TP-T error parameters. A simulation study on the step-by-step method is conducted and it shows a good performance. For the empirical analysis on the Korean COVID-19 confirmed cases, estimates in the HAR-TP-T models of order p = 2, 3, 4 are computed along with a couple of selected lags, which include the optimal lags chosen by minimizing the mean squares errors of the models. The estimation results by our proposed method and the solely MLE are compared with some criteria rules. Our proposed step-by-step method outperforms the MLE in two aspects: mean squares error of the HAR model and mean squares difference between the TP-T residuals and their densities. Moreover, forecasting for the Korean COVID-19 confirmed cases is discussed with the optimally selected HAR-TP-T model. Mean absolute percentage error of one-step ahead out-of-sample forecasts is evaluated as 0.0953% in the proposed model. We conclude that our proposed HAR-TP-T time series model with optimally selected lags and its step-by-step estimation provide an accurate forecasting performance for the Korean COVID-19 confirmed cases.

Visualization Tool of Distortion-Free Time-Series Matching (왜곡 제거 시계열 매칭의 시각화 도구)

  • Moon, Seongwoo;Lee, Sanghun;Kim, Bum-Soo;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.377-384
    • /
    • 2015
  • In this paper we propose a visualization tool for distortion-free time-series matching. Supporting distortion-free is a very important factor in time-series matching to get more accurate matching results. In this paper, we visualize the result of time-series matching, which removes various time-series distortions such as noise, offset translation, amplitude scaling, and linear trend by using moving average, normalization, linear detrending transformations, respectively. The proposed visualization tool works as a client-server model. The client sends a user-selected time-series, of which distortions are removed, to the server and visualizes the matching results. The server efficiently performs the distortion-free time-series matching on the multi-dimensional R*-tree index. By visualizing the matching result as five different charts, we can more easily and more intuitively understand the matching result.

Power Consumption Forecasting Scheme for Educational Institutions Based on Analysis of Similar Time Series Data (유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법)

  • Moon, Jihoon;Park, Jinwoong;Han, Sanghoon;Hwang, Eenjun
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.954-965
    • /
    • 2017
  • A stable power supply is very important for the maintenance and operation of the power infrastructure. Accurate power consumption prediction is therefore needed. In particular, a university campus is an institution with one of the highest power consumptions and tends to have a wide variation of electrical load depending on time and environment. For this reason, a model that can accurately predict power consumption is required for the effective operation of the power system. The disadvantage of the existing time series prediction technique is that the prediction performance is greatly degraded because the width of the prediction interval increases as the difference between the learning time and the prediction time increases. In this paper, we first classify power data with similar time series patterns considering the date, day of the week, holiday, and semester. Next, each ARIMA model is constructed based on the classified data set and a daily power consumption forecasting method of the university campus is proposed through the time series cross-validation of the predicted time. In order to evaluate the accuracy of the prediction, we confirmed the validity of the proposed method by applying performance indicators.

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).

Estiamtion of Time Series Model on Forest Fire Occurrences and Burned Area from 1970 to 2005 (1970-2005년 동안의 산불 발생건수 및 연소면적에 대한 시계열모형 추정)

  • Lee, Byungdoo;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.643-648
    • /
    • 2006
  • It is important to understand the patterns of forest fire in terms of effective prevention and suppression activities. In this study, the monthly forest fire occurrences and their burned areas were investigated to enhance the understanding of the patterns of forest fire in Korea. The statistics of forest fires in Korea, 1970 through 2005, built by Korea Forest Service was analyzed by using time series analysis technique to fit ARIMA models proposed by Box-Jenkins. The monthly differences in forest fire characteristics were clearly distinguished, with 59% of total forest fire occurrences and 72% of total burned area being in March and April. ARIMA(1, 0, 1) was the best fitted model to both the fire accurrences and the burned area time series. The fire time series have a strong relation to the fire occurrences and the burned area of 1 month and 12 months before.

Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data (시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교)

  • Lee, Soo-Yong;Lee, Kyoung-Joung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.730-736
    • /
    • 2011
  • In this paper, we designed the models for pattern classification which can reflect the latest trend in time series. It has been shown that fusion models based on statistical and AI methods are superior to traditional ones for the pattern classification model supporting decision making. Especially, the hit rates of pattern classification models combined with fuzzy theory are relatively increased. The statistical SVM models combined with fuzzy membership function, or the models combining neural network and FCM has shown good performance. BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, and Regression Analysis were used for pattern classification models in the experiments of this paper. The economical indices DB with time series properties of the financial market(Korea, KOSPI200 DB) and the electrocardiogram DB of arrhythmia patients in hospital emergencies(USA, MIT-BIH DB) were used for data base.

An Elasto-Plastic Constitutive Model for the nonlinearity at Small Strain Conditions (미소변형률 조건에서의 비선형성에 대한 탄소성 구성모델)

  • 오세붕;권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.351-356
    • /
    • 1999
  • An elasto-plastic constitutive model was Proposed, in which the behavior at small-to-large strain level can be modeled. From a mathematical approach it was proved that the model includes the previous successful models. The experimental results of a series of resonant column tests, torsional shear tests and triaxial tests were verified and as a result the proposed model could predict small-to-large strain behavior more consistently and accurately than the hyperbolic model and the Ramberg-Osgood model for a weathered granitic soil.

  • PDF

New FE On-line Model (실시간 압연하중 및 압연동력 예측 모델의 개선)

  • 김영환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.52-55
    • /
    • 2000
  • Investigated via a series of finite element process simulation is the effect of diverse process variables on some selected non-dimensional parameters characterizing the strip in hot strip rolling. Then on the basis of these parameters an on-line model is derived for the precise prediction of roll and roll power. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.