• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.027 seconds

Relationships Between the Characteristics of the Business Data Set and Forecasting Accuracy of Prediction models (시계열 데이터의 성격과 예측 모델의 예측력에 관한 연구)

  • 이원하;최종욱
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.133-147
    • /
    • 1998
  • Recently, many researchers have been involved in finding deterministic equations which can accurately predict future event, based on chaotic theory, or fractal theory. The theory says that some events which seem very random but internally deterministic can be accurately predicted by fractal equations. In contrast to the conventional methods, such as AR model, MA, model, or ARIMA model, the fractal equation attempts to discover a deterministic order inherent in time series data set. In discovering deterministic order, researchers have found that neural networks are much more effective than the conventional statistical models. Even though prediction accuracy of the network can be different depending on the topological structure and modification of the algorithms, many researchers asserted that the neural network systems outperforms other systems, because of non-linear behaviour of the network models, mechanisms of massive parallel processing, generalization capability based on adaptive learning. However, recent survey shows that prediction accuracy of the forecasting models can be determined by the model structure and data structures. In the experiments based on actual economic data sets, it was found that the prediction accuracy of the neural network model is similar to the performance level of the conventional forecasting model. Especially, for the data set which is deterministically chaotic, the AR model, a conventional statistical model, was not significantly different from the MLP model, a neural network model. This result shows that the forecasting model. This result shows that the forecasting model a, pp.opriate to a prediction task should be selected based on characteristics of the time series data set. Analysis of the characteristics of the data set was performed by fractal analysis, measurement of Hurst index, and measurement of Lyapunov exponents. As a conclusion, a significant difference was not found in forecasting future events for the time series data which is deterministically chaotic, between a conventional forecasting model and a typical neural network model.

  • PDF

The usefulness of overfitting via artificial neural networks for non-stationary time series

  • Ahn Jae-Joon;Oh Kyong-Joo;Kim Tae-Yoon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1221-1226
    • /
    • 2006
  • The use of Artificial Neural Networks (ANN) has received increasing attention in the analysis and prediction of financial time series. Stationarity of the observed financial time series is the basic underlying assumption in the practical application of ANN on financial time series. In this paper, we will investigate whether it is feasible to relax the stationarity condition to non-stationary time series. Our result discusses the range of complexities caused by non-stationary behavior and finds that overfitting by ANN could be useful in the analysis of such non-stationary complex financial time series.

  • PDF

Annual Precipitation Reconstruction Based on Tree-ring Data at Seorak (설악산 지역의 Tree-ring 자료를 이용한 연 강수량 재생성)

  • Kwak, Jae Won;Han, Heechan;Lee, Minjung;Kim, Hung Soo;Mun, Jangwon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • The purpose of this research is reconstruction of annual precipitation based on Tree-ring series at Seorak mountain and examine its effectiveness. To do so we performed nonlinear time series characteristics test of Tree-ring series and reconstructed annual precipitation of Gangneung from 1687 to 1911 using Artificial neural network and Nonlinear autoregressive exogeneous input (NARX) model which reflects stochastic properties. As a result, Tree-ring series at Seorak Mountain shows nonlinear time series property and reconstructed annual precipitation series drawn from NARX is similar in statistical characteristics of observed annual time series.

Volatility Analysis for Multivariate Time Series via Dimension Reduction (차원축소를 통한 다변량 시계열의 변동성 분석 및 응용)

  • Song, Eu-Gine;Choi, Moon-Sun;Hwang, S.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.825-835
    • /
    • 2008
  • Multivariate GARCH(MGARCH) has been useful in financial studies and econometrics for modeling volatilities and correlations between components of multivariate time series. An obvious drawback lies in that the number of parameters increases rapidly with the number of variables involved. This thesis tries to resolve the problem by using dimension reduction technique. We briefly review both factor models for dimension reduction and the MGARCH models including EWMA (Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model). We create meaningful portfolios obtained after reducing dimension through statistical factor models and fundamental factor models and in turn these portfolios are applied to MGARCH. In addition, we compare portfolios by assessing MSE, MAD(Mean absolute deviation) and VaR(Value at Risk). Various financial time series are analyzed for illustration.

Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

Copula-ARMA Model for Multivariate Wind Speed and Its Applications in Reliability Assessment of Generating Systems

  • Li, Yudun;Xie, Kaigui;Hu, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.421-427
    • /
    • 2013
  • The dependence between wind speeds in multiple wind sites has a considerable impact on the reliability of power systems containing wind energy. This paper presents a new method to generate dependent wind speed time series (WSTS) based on copulas theory. The basic feature of the method lies in separating multivariate WSTS into dependence structure and univariate time series. The dependence structure is modeled through the use of copulas, which, unlike the cross-correlation matrix, give a complete description of the joint distribution. An autoregressive moving average (ARMA) model is applied to represent univariate time series of wind speed. The proposed model is illustrated using wind data from two sites in Canada. The IEEE Reliability Test System (IEEE-RTS) is used to examine the proposed model and the impact of wind speed dependence between different wind regimes on the generation system reliability. The results confirm that the wind speed dependence has a negative effect on the generation system reliability.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

Seasonal adjustment for monthly time series based on daily time series (일별 시계열을 이용한 월별 시계열의 계절조정)

  • Geung-Hee Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.457-471
    • /
    • 2023
  • The monthly series is an aggregation of daily values. In the absence of observable daily data, calendar effects such as trading day and holidays are estimated using a RegARIMA model. However, if the daily series were observable, these calendar effects could be estimated directly from the daily series, potentially improving the seasonal adjustment of the monthly time series. In this paper, we propose a method to improve the seasonal adjustment of monthly time series by using calendar variation estimation based on daily time series. We apply this seasonal adjustment method to three monthly time series and compare our results with those obtained using X-13ARIMA-SEATS.

Accuracy analysis of Multi-series Phenological Landcover Classification Using U-Net-based Deep Learning Model - Focusing on the Seoul, Republic of Korea - (U-Net 기반 딥러닝 모델을 이용한 다중시기 계절학적 토지피복 분류 정확도 분석 - 서울지역을 중심으로 -)

  • Kim, Joon;Song, Yongho;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.409-418
    • /
    • 2021
  • The land cover map is a very important data that is used as a basis for decision-making for land policy and environmental policy. The land cover map is mapped using remote sensing data, and the classification results may vary depending on the acquisition time of the data used even for the same area. In this study, to overcome the classification accuracy limit of single-period data, multi-series satellite images were used to learn the difference in the spectral reflectance characteristics of the land surface according to seasons on a U-Net model, one of the deep learning algorithms, to improve classification accuracy. In addition, the degree of improvement in classification accuracy is compared by comparing the accuracy of single-period data. Seoul, which consists of various land covers including 30% of green space and the Han River within the area, was set as the research target and quarterly Sentinel-2 satellite images for 2020 were aquired. The U-Net model was trained using the sub-class land cover map mapped by the Korean Ministry of Environment. As a result of learning and classifying the model into single-period, double-series, triple-series, and quadruple-series through the learned U-Net model, it showed an accuracy of 81%, 82% and 79%, which exceeds the standard for securing land cover classification accuracy of 75%, except for a single-period. Through this, it was confirmed that classification accuracy can be improved through multi-series classification.

Performance Prediction of Centrifugal Pumps using Two Zone Model (두영역모델을 사용한 원심펌프의 성능예측)

  • Choi, Young-Seok;Shim, Jae-Hyeok;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.33-41
    • /
    • 1998
  • In this study, the performance prediction programs for centrifugal pumps are developed. To estimate the losses in the centrifugal pump impellers, two-zone model and TEIS(two elements in series) model are applied to the program. The basic concept of two zone model considers the primary zone that is an isentropic core flow and the secondary zone that is non-isentropic region at the impeller exit. The flows through two different zones mixed out at the impeller exit and the mixing process occurs with an increase in entropy, a decrease in total pressure. The level of the core flow diffusion in a impeller was calculated using TEIS(two elements in series) model. The effects of various parameters which are used in this program on the prediction of head and efficiency are discussed. The correlation curves to select the effectiveness of the primitive TEIS model were suggested according to the specific speed of the centrifugal pumps.

  • PDF