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Abstract 

 

The use of Artificial Neural Networks (ANN) 

has received increasing attention in the analysis and 

prediction of financial time series. Stationarity of the 

observed financial time series is the basic underlying 

assumption in the practical application of ANN on 

financial time series. In this paper, we will investigate 

whether it is feasible to relax the stationarity condition 

to non-stationary time series. Our result discusses the 

range of complexities caused by non-stationary 

behavior and finds that overfitting by ANN could be 

useful in the analysis of such non-stationary complex 

financial time series.  

 

Keywords: Non-stationary time series; Overfitting; 

Artificial neural networks; Asymptotic stationary 

autoregressive model  

 

1. Introduction 

 

Stationarity is usually a desirable assumption 

in the analysis and prediction of financial time series. 

Indeed, when one is interested in finding a relation 

between the present and the past through prediction, the 

relation must be stationary throughout the evolution of 

time; otherwise, the prediction would not be possible 

[3]. In fact, there is a well-defined mathematical 

definition of stationarity, which imposes certain regular 

conditions on either a distribution or its moments [1] 

and various methods are developed to find the 

stationary relation governing the time series data [2, 4, 

5, 9]. Recently, artificial neural networks (ANN) are 

being used more frequently in the analysis of financial 
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time series as they move from simple pattern 

recognition to a diverse range of application areas [7]. 

It is known that the ANN mapping process can cover a 

greater range of problem complexity and is superior in 

its generality and practical ease in implementation 

owing to its powerful and flexible capability [6].  

In this short article, we will investigate 

ANN’s capability of extracting a rule governing 

seemingly non-stationary financial time series data. 

Indeed, we will investigate the range of complexity due 

to non-stationarity that ANN might cover and find that 

overfitting by an ANN might be useful for such 

complex financial time series analysis. Our discussion 

will mainly be based on empirical examples. The 

following section discusses various non-stationary 

financial time series theoretically and empirically to 

show that overfitting by ANN could play a significant 

role in the analysis of non-stationary financial time 

series. The final section contains the concluding 

remarks. 

 

2. Non-stationary processes 

 

Since a stationary condition usually implies a 

stable process, a varying process may be considered to 

be close to stationary if it varies slowly. From this point 

of view, one might define an asymptotic stationary 

autoregressive (AR) process Zt  as the following 

nonlinear AR model: 

( , , ... , ) , 1, 2, ,1 2Z f Z Z Z t p nt n t t t p tε= + = +− − − L   (1) 

where lim f fn n= is termed as an “asymptotic 

stationary AR function” and tε  is the identically and 

independently distributed (iid) error. Note that Zt  is 

clearly non-stationary since its AR function depends on 

n . Intuitively speaking, the asymptotic stationary AR 

process Zt  assumes that it varies slowly enough that 

its asymptotic stationary AR function f  may exist. 

There are some mathematical extensions of stationarity 

in this direction by others, see, e.g., asymptotic 

stationary density [8]. Note that varying degree (and 

hence complexity) of a process is determined by the 

convergence speed for lim f fn n= . More precisely, 

the convergence speed may be defined by || ||f f rn n− =  

for fn , ( )f C S∈  and a real valued sequence rn  

converging to zero. Here ( )C S  is the space of all 

continuous real functions on the closed set S , metrized 

by || || sup | ( ) ( )|f g f t g tt S− = −∈ . 

Now, various non-stationary processes 

(slowly or regularly varying processes) are studied 

through the Korea stock price index (KOSPI) during 

the period 1994 ~ 1995 (Figure 1). A rough look at 

Figure 1 reveals that there are varying degrees of 

change in each year.  For our study, KOSPI Indices of 

1995, 1997 and 1999 have been chosen. It is easy to see 

from Figure 1 that all of them are non-stationary and 

that their varying degree is increasing in the order of 

1995, 1997, and 1999 (this is also clear from sample 

auto-correlation function (SACF) of KOSPI of each 

year, see Figure 2). Note that during 1997 ~ 1999, 

Korea experienced an economic crisis followed by 

recovery, and as such the KOSPI of those years are 

characterized by volatile movements. In this paper, 

SACF is obtained via STATISTICA version 6. 

200

300

400

500

600

700

800

900

1000

1100

1200

D
a
te

9
4
0
4
2
9

9
4
0
8
2
0

9
4
1
2
1
2

9
5
0
4
1
3

9
5
0
8
0
5

9
5
1
1
2
7

9
6
0
3
2
5

9
6
0
7
1
7

9
6
1
1
0
9

9
7
0
3
1
0

9
7
0
7
0
2

9
7
1
0
2
5

9
8
0
2
2
3

9
8
0
6
1
6

9
8
1
0
0
8

9
9
0
2
1
0

9
9
0
6
2
9

9
9
1
1
0
9

0
0
0
3
2
7

0
0
0
8
1
4

0
1
0
1
0
4

0
1
0
5
2
3

0
1
1
0
0
9

0
2
0
2
2
5

0
2
0
7
1
2

0
2
1
1
2
6

 

 

Figure 1. KOSPI from January, 1994 to February, 2003 
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(a) 1995 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 +.367 .0560

 23 +.379 .0562

 22 +.393 .0563

 21 +.406 .0564

 20 +.417 .0565

 19 +.428 .0566

 18 +.439 .0567

 17 +.449 .0568

 16 +.460 .0569

 15 +.476 .0570

 14 +.488 .0571

 13 +.510 .0572

 12 +.542 .0573

 11 +.577 .0574

 10 +.613 .0575

  9 +.646 .0576

  8 +.680 .0577

  7 +.719 .0578

  6 +.759 .0579

  5 +.798 .0580

  4 +.838 .0581

  3 +.884 .0582

  2 +.926 .0583

  1 +.967 .0584

Lag Corr. S.E.

0

2760. 0.000

2717. 0.000

2671. 0.000

2623. 0.000

2571. 0.000

2516. 0.000

2459. 0.000

2399. 0.000

2336. 0.000

2271. 0.000

2201. 0.000

2128. 0.000

2049. 0.000

1959. 0.000

1859. 0.000

1745. 0.000

1619. 0.000

1480. 0.000

1326. 0.000

1154. 0.000

964.6 0.000

756.7 0.000

526.0 0.000

274.1 0.000

  Q p

 Conf. Limit

 

 (b) 1997 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 +.590 .0559

 23 +.607 .0560

 22 +.625 .0561

 21 +.644 .0562

 20 +.665 .0563

 19 +.683 .0564

 18 +.699 .0565

 17 +.713 .0566

 16 +.727 .0567

 15 +.741 .0568

 14 +.758 .0569

 13 +.775 .0570

 12 +.793 .0571

 11 +.813 .0572

 10 +.833 .0573

  9 +.849 .0574

  8 +.864 .0575

  7 +.876 .0576

  6 +.890 .0577

  5 +.906 .0578

  4 +.923 .0579

  3 +.942 .0580

  2 +.963 .0581

  1 +.983 .0582

Lag Corr. S.E.

0

4621. 0.000

4510. 0.000

4392. 0.000

4268. 0.000

4137. 0.000

3997. 0.000

3850. 0.000

3697. 0.000

3539. 0.000

3374. 0.000

3204. 0.000

3027. 0.000

2842. 0.000

2649. 0.000

2447. 0.000

2236. 0.000

2017. 0.000

1791. 0.000

1560. 0.000

1322. 0.000

1077. 0.000

823.2 0.000

559.4 0.000

284.9 0.000

  Q p

 Conf. Limit

 

(c) 1999 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 +.629 .0600

 23 +.647 .0601

 22 +.665 .0603

 21 +.684 .0604

 20 +.703 .0605

 19 +.721 .0607

 18 +.737 .0608

 17 +.753 .0609

 16 +.769 .0611

 15 +.786 .0612

 14 +.802 .0613

 13 +.816 .0614

 12 +.833 .0616

 11 +.849 .0617

 10 +.864 .0618

  9 +.879 .0620

  8 +.892 .0621

  7 +.902 .0622

  6 +.913 .0624

  5 +.925 .0625

  4 +.938 .0626

  3 +.951 .0627

  2 +.967 .0629

  1 +.984 .0630

Lag Corr. S.E.

0

4275. 0.000

4166. 0.000

4050. 0.000

3928. 0.000

3800. 0.000

3665. 0.000

3524. 0.000

3377. 0.000

3224. 0.000

3065. 0.000

2900. 0.000

2729. 0.000

2553. 0.000

2370. 0.000

2181. 0.000

1986. 0.000

1785. 0.000

1578. 0.000

1368. 0.000

1154. 0.000

934.5 0.000

710.0 0.000

480.2 0.000

243.8 0.000

  Q p

 Conf. Limit

 

Figure 2. SACF of KOSPI 

Since the movement of KOSPI becomes 

more complex in the order of 1995, 1997  and 1999, 

we use the model (1) with 3, 4, 5p=  respectively, i.e., 

( , , ) ,, 95 ,1 1 2 3Z f Z Z Zt n t t t tε= +− − −            (2) 

( , , , ) ,, 97 , 2 1 2 3 4Z f Z Z Z Zt n t t t t tε= +− − − −      (3) 

( , , , , ), 99 , 3 1 2 3 4 5Z f Z Z Z Z Zt n t t t t t tε= +− − − − −  (4) 

where n  is the number of observations for 

each year. Note that the AR order for each year ,fn i  

( 1, 2, 3i= ) has been chosen so that it contains a degree 

of complexity. Now, ,fn i  is recovered through a 

backpropagation neural network (BPN), 1p p× ×  

multi-layer ANN for each year which consists of input 

layer of p  units, hidden layer of p  units, and 

output layer of 1  unit. As an activation function, the 

logistic function is used with learning rate, momentum 

and initial weights given by 0.1, 0.1 and 0.3, 

respectively. See Figure 3 for the detailed architecture 

of the BPN’s used here. 

 

(a) 1995 

1tZ −
Input Layer

Output Layer

Hidden Layer

2tZ − 3tZ −

1h 2h 3h

, 95tZ

, 95
ˆ
tZPredicted Value

1tZ −
Input Layer

Output Layer

Hidden Layer

2tZ − 3tZ −

1h 2h 3h

, 95tZ

, 95
ˆ
tZPredicted Value

 

 

(b) 1997 

1tZ −
Input Layer

Output Layer

Hidden Layer

2tZ − 4tZ −

1h 2h 4h

, 97tZ

, 97
ˆ
tZPredicted Value

3tZ −

3h

1tZ −
Input Layer

Output Layer

Hidden Layer

2tZ − 4tZ −

1h 2h 4h

, 97tZ

, 97
ˆ
tZPredicted Value

3tZ −

3h

 

 

(c) 1999 

 

1tZ −
Input Layer

Output Layer

Hidden Layer

3tZ − 5tZ −

1h 3h 5h

, 99tZ

, 99
ˆ
tZPredicted Value

2tZ − 4tZ −

4h2h

1tZ −
Input Layer

Output Layer

Hidden Layer

3tZ − 5tZ −

1h 3h 5h

, 99tZ

, 99
ˆ
tZPredicted Value

2tZ − 4tZ −

4h2h

 

Figure 3. Architectures of Artificial Neural Networks. 

( 1, 2, ,5)h ii = K  means hidden node. 

  

To check the effects of overfitting by ANN 

for complex problems, an ANN with validation set and 

an ANN without validation set are trained for each year. 

Since validation set is set up to avoid the overfitting in 
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the training data, an ANN without validation set is 

likely to be overfitted to the training data. SACF of 

residuals for each year are given in Figure 4 for the 

ANN with validation set and in Figure 5 for the ANN 

without validation set. It is easy to notice that residual 

SACF’s are improved significantly by an ANN without 

validation set across years. Indeed, when one compares 

residual SACF of an ANN without validation set with 

that of an ANN with validation set for each year, 

residual SACF of an ANN without validation set looks 

more independent than its counterpart. In particular, 

1999 – the most complex year – reports the most 

noticeable improvement. Another measure of fitting 

capacity, monthly residual squared errors (RSE) for 

each year are given in Figure 6. Again improvement by 

ANN without validation set could be noticed, though 

the improvement is relatively mild, compared to SACF. 

Also, 1999 stands out in monthly RSE improvement by 

ANN without validation set though its absolute 

magnitude exceeds other years. In Figure 6, “w/ Val.” 

denotes “with validation set” and “w/o Val.” “without 

validation set”.  

(a) 1995 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 +.142 .0560

 23 +.094 .0562

 22 -.038 .0563

 21 +.088 .0564

 20 -.036 .0565

 19 -.056 .0566

 18 +.128 .0567

 17 -.030 .0568

 16 -.044 .0569

 15 +.176 .0570

 14 -.026 .0571

 13 -.036 .0572

 12 +.014 .0573

 11 +.020 .0574

 10 +.062 .0575

  9 +.061 .0576

  8 +.017 .0577

  7 -.010 .0578

  6 +.132 .0579

  5 +.059 .0580

  4 -.036 .0581

  3 +.169 .0582

  2 +.034 .0583

  1 +.151 .0584

Lag Corr. S.E.

0

54.18 .0004

47.72 .0018

44.92 .0027

44.47 .0020

42.05 .0027

41.66 .0020

40.69 .0017

35.62 .0052

35.35 .0036

34.74 .0027

25.16 .0330

24.96 .0234

24.56 .0171

24.49 .0108

24.37 .0067

23.22 .0057

22.09 .0048

22.01 .0025

21.98 .0012

16.81 .0049

15.78 .0033

15.40 .0015

 7.00 .0303

 6.66 .0099

  Q p

 Conf. Limit

 

(b) 1997 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 +.037 .0559

 23 -.043 .0560

 22 -.012 .0561

 21 +.005 .0562

 20 +.130 .0563

 19 -.016 .0564

 18 +.012 .0565

 17 +.009 .0566

 16 +.008 .0567

 15 +.031 .0568

 14 -.059 .0569

 13 +.028 .0570

 12 +.037 .0571

 11 -.017 .0572

 10 +.084 .0573

  9 +.070 .0574

  8 +.009 .0575

  7 +.029 .0576

  6 -.194 .0577

  5 -.005 .0578

  4 -.053 .0579

  3 +.024 .0580

  2 +.007 .0581

  1 +.090 .0582

Lag Corr. S.E.

0

27.29 .2912

26.86 .2621

26.28 .2401

26.23 .1980

26.22 .1588

20.92 .3413

20.84 .2874

20.80 .2355

20.78 .1874

20.75 .1450

20.46 .1164

19.38 .1118

19.15 .0851

18.72 .0663

18.63 .0453

16.46 .0579

14.96 .0601

14.93 .0369

14.68 .0229

 3.41 .6376

 3.40 .4934

 2.57 .4634

 2.39 .3024

 2.38 .1231

  Q p

 Conf. Limit

 

(c) 1999 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 -.111 .0600

 23 -.081 .0601

 22 -.098 .0603

 21 +.016 .0604

 20 -.007 .0605

 19 -.031 .0607

 18 +.025 .0608

 17 +.033 .0609

 16 -.007 .0611

 15 +.063 .0612

 14 +.056 .0613

 13 -.039 .0614

 12 +.052 .0616

 11 +.082 .0617

 10 +.032 .0618

  9 +.128 .0620

  8 +.091 .0621

  7 +.138 .0622

  6 +.101 .0624

  5 +.058 .0625

  4 +.076 .0626

  3 +.060 .0627

  2 +.148 .0629

  1 +.183 .0630

Lag Corr. S.E.

0

45.00 .0059

41.56 .0103

39.73 .0117

37.11 .0164

37.04 .0116

37.03 .0079

36.76 .0056

36.59 .0038

36.30 .0026

36.29 .0016

35.22 .0014

34.39 .0011

34.00 .0007

33.30 .0005

31.52 .0005

31.25 .0003

26.98 .0007

24.84 .0008

19.91 .0029

17.26 .0040

16.41 .0025

14.94 .0019

14.04 .0009

 8.46 .0036

  Q p

 Conf. Limit

 

 

Figure 4. Residual SACF of KOSPI (ANN with 

validation set) 

 

(a) 1995 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 +.094 .0560

 23 +.056 .0562

 22 -.081 .0563

 21 +.075 .0564

 20 -.059 .0565

 19 -.110 .0566

 18 +.098 .0567

 17 -.039 .0568

 16 -.095 .0569

 15 +.162 .0570

 14 -.071 .0571

 13 -.056 .0572

 12 +.020 .0573

 11 +.024 .0574

 10 +.050 .0575

  9 +.036 .0576

  8 -.007 .0577

  7 -.041 .0578

  6 +.116 .0579

  5 +.044 .0580

  4 -.092 .0581

  3 +.140 .0582

  2 +.009 .0583

  1 +.033 .0584

Lag Corr. S.E.

0

44.48 .0067

41.69 .0099

40.69 .0090

38.63 .0109

36.86 .0122

35.78 .0113

32.01 .0220

29.00 .0346

28.52 .0274

25.76 .0407

17.63 .2242

16.07 .2455

15.12 .2347

15.01 .1822

14.83 .1385

14.07 .1197

13.69 .0902

13.68 .0573

13.19 .0402

 9.14 .1036

 8.58 .0726

 6.10 .1070

  .35 .8410

  .32 .5702

  Q p

 Conf. Limit

 

 

(b) 1997 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 +.050 .0559

 23 -.058 .0560

 22 -.027 .0561

 21 -.005 .0562

 20 +.121 .0563

 19 -.037 .0564

 18 -.001 .0565

 17 +.002 .0566

 16 -.000 .0567

 15 +.027 .0568

 14 -.083 .0569

 13 +.020 .0570

 12 +.036 .0571

 11 -.034 .0572

 10 +.064 .0573

  9 +.048 .0574

  8 -.004 .0575

  7 +.025 .0576

  6 -.216 .0577

  5 -.025 .0578

  4 -.076 .0579

  3 +.019 .0580

  2 -.034 .0581

  1 -.004 .0582

Lag Corr. S.E.

0

28.92 .2234

28.10 .2120

27.04 .2098

26.81 .1773

26.81 .1409

22.16 .2763

21.74 .2441

21.73 .1952

21.73 .1521

21.73 .1151

21.50 .0896

19.39 .1114

19.27 .0823

18.86 .0636

18.50 .0471

17.26 .0448

16.55 .0351

16.55 .0206

16.36 .0119

 2.35 .7985

 2.17 .7045

  .45 .9292

  .35 .8407

  .00 .9470

  Q p

 Conf. Limit

 

 

(c) 1999 

Autocorrelation Function

-1.0 -0.5 0.0 0.5 1.0

0

 24 -.048 .0600

 23 -.067 .0601

 22 -.076 .0603

 21 +.080 .0604

 20 +.074 .0605

 19 -.015 .0607

 18 +.048 .0608

 17 +.083 .0609

 16 -.048 .0611

 15 +.043 .0612

 14 +.026 .0613

 13 -.064 .0614

 12 +.004 .0616

 11 +.056 .0617

 10 -.010 .0618

  9 +.060 .0620

  8 +.027 .0621

  7 +.043 .0622

  6 -.036 .0624

  5 -.036 .0625

  4 +.009 .0626

  3 -.005 .0627

  2 +.014 .0629

  1 -.006 .0630

Lag Corr. S.E.

0

14.92 .9229

14.28 .9186

13.02 .9325

11.41 .9541

 9.64 .9742

 8.14 .9852

 8.08 .9774

 7.46 .9768

 5.59 .9919

 4.98 .9923

 4.49 .9917

 4.31 .9874

 3.23 .9937

 3.23 .9873

 2.39 .9923

 2.37 .9842

 1.44 .9937

 1.25 .9898

  .77 .9930

  .42 .9947

  .09 .9991

  .07 .9957

  .06 .9715

  .01 .9235

  Q p

 Conf. Limit

 

Figure 5. Residual SACF of KOSPI (ANN without 

validation set) 
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(a) 1995 
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(b) 1997 
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(c) 1999 
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Figure 6. Monthly RSE 

 

From our experiments, it appears that the complex 

feature of financial time series data may be traced 

reasonably well by allowing overfitting by an ANN 

which could be effectively done by employing a rather 

complicated auto-regressive model and removing the 

validation set in the training process. In summary our 

finding is that though fitting is hard for data with 

complex movements, overfitting may ease the problem 

significantly. 

  

3. Concluding Remarks 

 

In the analysis of financial time series data, 

stationarity is a desirable assumption. We focus on the 

case that this assumption does not hold any more (i.e., 

complex time series) and consider an ANN in the 

analysis of such cases. Using the empirical example of 

KOSPI, we find an intuitive and interesting result that 

overfitting by an ANN (ANN without validation set 

combined with a rather complicated auto-regressive 

model) might be a key to success for complex financial 

time series analysis. 
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