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Abstract

The use of Artificial Neural Networks (ANN)
has received increasing attention in the analysis and
prediction of financial time series. Stationarity of the
observed financial time series is the basic underlying
assumption in the practical application of ANN on
financial time series. In this paper, we will investigate
whether it is feasible to relax the stationarity condition
to non-stationary time series. Our result discusses the
range of complexities caused by non-stationary
behavior and finds that overfitting by ANN could be
useful in the analysis of such non-stationary complex

financial time series.
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1. Introduction

Stationarity is usually a desirable assumption
in the analysis and prediction of financial time series.
Indeed, when one is interested in finding a relation
between the present and the past through prediction, the
relation must be stationary throughout the evolution of
time; otherwise, the prediction would not be possible
[3]. In fact, there is a well-defined mathematical
definition of stationarity, which imposes certain regular
conditions on either a distribution or its moments [1]
and various methods are developed to find the
stationary relation governing the time series data [2, 4,
5, 9]. Recently, artificial neural networks (ANN) are

being used more frequently in the analysis of financial
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time series as they move from simple pattern
recognition to a diverse range of application areas [7].
It is known that the ANN mapping process can cover a
greater range of problem complexity and is superior in
its generality and practical ease in implementation
owing to its powerful and flexible capability [6].

In this short article, we will investigate
ANN’s capability of extracting a rule governing
seemingly non-stationary financial time series data.
Indeed, we will investigate the range of complexity due
to non-stationarity that ANN might cover and find that
overfitting by an ANN might be useful for such
complex financial time series analysis. Our discussion
will mainly be based on empirical examples. The
following section discusses various non-stationary
financial time series theoretically and empirically to
show that overfitting by ANN could play a significant
role in the analysis of non-stationary financial time
series. The final section contains the concluding

remarks.

2. Non-stationary processes

Since a stationary condition usually implies a
stable process, a varying process may be considered to
be close to stationary if it varies slowly. From this point
of view, one might define an asymptotic stationary
autoregressive (AR) process Z; as the following
nonlinear AR model:

Zy=fn(Zs—1, Zt—2, ..., Zt—p)"'gta t=p+,2,L ,n (1)
where lim, f,=f is termed as an “asymptotic
stationary AR function” and & is the identically and
independently distributed (iid) error. Note that Z; is
clearly non-stationary since its AR function depends on
n . Intuitively speaking, the asymptotic stationary AR

process Z; assumes that it varies slowly enough that
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its asymptotic stationary AR function f may exist.
There are some mathematical extensions of stationarity
in this direction by others, see, e.g., asymptotic
stationary density [8]. Note that varying degree (and
hence complexity) of a process is determined by the
convergence speed for lim, f,=f . More precisely,
the convergence speed may be defined by || f;,—f1| =r,
for f,;, feC(S) and a real valued sequence 7,
converging to zero. Here C(S) is the space of all
continuous real functions on the closed set.S', metrized
by |/ =gl=supses|f(1)-g(0)l-

Now, various non-stationary processes
(slowly or regularly varying processes) are studied
through the Korea stock price index (KOSPI) during
the period 1994 ~ 1995 (Figure 1). A rough look at
Figure 1 reveals that there are varying degrees of
change in each year. For our study, KOSPI Indices of
1995, 1997 and 1999 have been chosen. It is easy to see
from Figure 1 that all of them are non-stationary and
that their varying degree is increasing in the order of
1995, 1997, and 1999 (this is also clear from sample
auto-correlation function (SACF) of KOSPI of each
year, see Figure 2). Note that during 1997 ~ 1999,
Korea experienced an economic crisis followed by
recovery, and as such the KOSPI of those years are
characterized by volatile movements. In this paper,

SACEF is obtained via STATISTICA version 6.
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Figure 1. KOSPI from January, 1994 to February, 2003
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Figure 2. SACF of KOSPI
Since the movement of KOSPI becomes

more complex in the order of 1995, 1997 and 1999,

we use the model (1) with p=3,4,5 respectively, i.e.,
2)
Zt,97=1fn,2(Zt-1,Z4-2, Zt-3, Zt—4)+&¢, 3

Zt,99=fn,3(Zt-1. Z4—2. Z4-3, Zt—4, Z1—5)+& (4)

Zt,95=fn, \(Z¢—1.2¢-2.21-3)+¢1

where n is the number of observations for

each year. Note that the AR order for each year f), ;
(i=1,2,3) has been chosen so that it contains a degree

of complexity. Now, f; ; is recovered through a

backpropagation neural network (BPN),

pxpx1
multi-layer ANN for each year which consists of input
layer of p units, hidden layer of p units, and

output layer of 1 unit. As an activation function, the

logistic function is used with learning rate, momentum
and initial weights given by 0.1, 0.1 and 0.3,
respectively. See Figure 3 for the detailed architecture

of the BPN’s used here.
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Figure 3. Architectures of Artificial Neural Networks.
h; (i=1,2,K ,5) means hidden node.

To check the effects of overfitting by ANN
for complex problems, an ANN with validation set and
an ANN without validation set are trained for each year.

Since validation set is set up to avoid the overfitting in



the training data, an ANN without validation set is
likely to be overfitted to the training data. SACF of
residuals for each year are given in Figure 4 for the
ANN with validation set and in Figure 5 for the ANN
without validation set. It is easy to notice that residual
SACEF’s are improved significantly by an ANN without
validation set across years. Indeed, when one compares
residual SACF of an ANN without validation set with
that of an ANN with validation set for each year,
residual SACF of an ANN without validation set looks
more independent than its counterpart. In particular,
1999 — the most complex year — reports the most
noticeable improvement. Another measure of fitting
capacity, monthly residual squared errors (RSE) for
each year are given in Figure 6. Again improvement by
ANN without validation set could be noticed, though
the improvement is relatively mild, compared to SACF.
Also, 1999 stands out in monthly RSE improvement by
ANN without validation set though its absolute
magnitude exceeds other years. In Figure 6, “w/ Val.”
denotes “with validation set” and “w/o Val.” “without
validation set”.
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Figure 4. Residual SACF of KOSPI (ANN with

validation set)
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Figure 6. Monthly RSE
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From our experiments, it appears that the complex
feature of financial time series data may be traced
reasonably well by allowing overfitting by an ANN
which could be effectively done by employing a rather
complicated auto-regressive model and removing the
validation set in the training process. In summary our
finding is that though fitting is hard for data with
complex movements, overfitting may ease the problem

significantly.

3. Concluding Remarks

In the analysis of financial time series data,
stationarity is a desirable assumption. We focus on the
case that this assumption does not hold any more (i.e.,
complex time series) and consider an ANN in the
analysis of such cases. Using the empirical example of
KOSPI, we find an intuitive and interesting result that
overfitting by an ANN (ANN without validation set
combined with a rather complicated auto-regressive
model) might be a key to success for complex financial

time series analysis.
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