• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.464 seconds

Generalized Linear Model with Time Series Data (비정규 시계열 자료의 회귀모형 연구)

  • 최윤하;이성임;이상열
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.365-376
    • /
    • 2003
  • In this paper we reviewed a variety of non-Gaussian time series models, and studied the model selection criteria such as AIC and BIC to select proper models. We also considered the likelihood ratio test and applied it to analysis of Polio data set.

Analysis for Series Resistance of Amorphous Silicon Thin Film Transistor (비정질 실리코 박막 트랜지스터의 직렬 저항에 관한 분석)

  • Kim, Youn-Sang;Lee, Seong-Kyu;Han, Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.951-957
    • /
    • 1994
  • We present a new model for the series resistance of inverted-staggered amorphous silicon (a-Si) thin film transistors (TFT's) by employing the current spreading under the source and the drain contacts as well as the space charge limited current model. The calculated results based on our model have been in good agreements with the measured data over a wide range of applied voltage, gate-to-source and gate-to-drain overlap length, channel length, and operating temperature. Our model shows that the contribution of the series resistances to the current-voltage (I-V) characteristics of the a-Si TFT in the linear regime is more significant at low drain and high gate voltages, for short channel and small overlap length, and at low operating temperature, which have been verified successfully by the experimental measurements.

Recursive Short-Term Load Forecasting Using Kalman Filter and Time Series (칼만 필터와 시계열을 이용한 순환단기 부하예측)

  • 박영문;정정주
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.6
    • /
    • pp.191-198
    • /
    • 1983
  • This paper describes the aplication of different model which can be used for short-term load prediction. The model is based on Bohlin's approach to first develop a load profile model representing the nominal load component and the Box-Jenkins approach is used to predict residuals. An on-line algorithm using Kalman Filter and Time Series is implemented for and hour-ahead prediction. In the Kalman Filter system equation and measurement equation were fixed and parameters of Time Series were varied week after week. A set of data for Korea Electric Power Corporation from April to June 1981 was used for the evaluation of the model. As the result of this simulation 1.2% rms error was acquired.

  • PDF

Modeling of Normal Gait Acceleration Signal Using a Time Series Analysis Method (시계열 분석을 이용한 정상인의 보행 가속도 신호의 모델링)

  • Lim Ye-Taek;Lee Kyoung-Joung;Ha Eunho;Kim Han-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.462-467
    • /
    • 2005
  • In this paper, we analyzed normal gait acceleration signal by time series analysis methods. Accelerations were measured during walking using a biaxial accelerometer. Acceleration data were acquired from normal subjects(23 men and one woman) walking on a level corridor of 20m in length with three different walking speeds. Acceleration signals were measured at a sampling frequency of 60Hz from a biaxial accelerometer mounted between L3 and L4 intervertebral area. Each step signal was analyzed using Box-Jenkins method. Most of the differenced normal step signals were modeled to AR(3) and the model didn't show difference for model's orders and coefficients with walking speed. But, tile model showed difference with acceleration signal direction - vertical and lateral. The above results suggested the proposed model could be applied to unit analysis.

Machine Learning Based Architecture and Urban Data Analysis - Construction of Floating Population Model Using Deep Learning - (머신러닝을 통한 건축 도시 데이터 분석의 기초적 연구 - 딥러닝을 이용한 유동인구 모델 구축 -)

  • Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.

LSTM-based Sales Forecasting Model

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1232-1245
    • /
    • 2021
  • In this study, prediction of product sales as they relate to changes in temperature is proposed. This model uses long short-term memory (LSTM), which has shown excellent performance for time series predictions. For verification of the proposed sales prediction model, the sales of short pants, flip-flop sandals, and winter outerwear are predicted based on changes in temperature and time series sales data for clothing products collected from 2015 to 2019 (a total of 1,865 days). The sales predictions using the proposed model show increases in the sale of shorts and flip-flops as the temperature rises (a pattern similar to actual sales), while the sale of winter outerwear increases as the temperature decreases.

Comparison of forecasting performance of time series models for the wholesale price of dried red peppers: focused on ARX and EGARCH

  • Lee, Hyungyoug;Hong, Seungjee;Yeo, Minsu
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.859-870
    • /
    • 2018
  • Dried red peppers are a staple agricultural product used in Korean cuisine and as such, are an important aspect of agricultural producers' income. Correctly forecasting both their supply and demand situations and price is very important in terms of the producers' income and consumer price stability. The primary objective of this study was to compare the performance of time series forecasting models for dried red peppers in Korea. In this study, three models (an autoregressive model with exogenous variables [ARX], AR-exponential generalized autoregressive conditional heteroscedasticity [EGARCH], and ARX-EGARCH) are presented for forecasting the wholesale price of dried red peppers. As a result of the analysis, it was shown that the ARX model and ARX-EGARCH model, each of which adopt both the rolling window and the adding approach and use the agricultural cooperatives price as the exogenous variable, showed a better forecasting performance compared to the autoregressive model (AR)-EGARCH model. Based on the estimation methods and results, there was no significant difference in the accuracy of the estimation between the rolling window and adding approach. In the case of dried red peppers, there is limitation in building the price forecasting models with a market-structured approach. In this regard, estimating a forecasting model using only price data and identifying the forecast performance can be expected to complement the current pricing forecast model which relies on market shipments.

Stochastic Properties of Water Quality Variation in Downstream Part of Han River (한강 하류부의 수질변동에 대한 추계학적 특성(I) - 특히 뚝도 및 노량진 지점의 DO, 탁도, 수온의 변동을 중심으로 -)

  • 이홍근
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.23-36
    • /
    • 1982
  • The stochastic variations and structures of time series data on water quality were examined by employing the techniques of autocorrelation function, variance spectrum, Fourier series, autoregressive model and ARIMA model. These time series included hourly and daily observation on DO, turbidity, conductivity pH and water temperature. The measurement was made by automatic recording instrument at Noryangjin and Dook-do located in the downstream part of Han River during 1975 and 1976. Hourly water quality time series varied with the dominant 24-hour periodicity, and the 12-hour periodicity was also observed. An important factor affecting 24-hour periodic variation of DO is believed to be photosynthesis by algae. These phenomena might be attributable to periodic discharges of municipal sewage. Noryangjin site showed the more distinct 12-hour periodicity than Dook-do site did, and tidal effect might be responsible for the difference. The water quality, as measured by DO and turbidity, was better in the afternoon compared with the quality in the morning. This change can be explained by the periodic variation of DO, temperature and the amount of municipal wewage discharge. It was also observed that the water temperature at Noryangjin was higher than the temperature at Dook-do. This difference might have been caused by the pollutants that were added to the section between two sites. The correlation coefficients between some of the variables were fairly high. For example, the coefficient was -0.88 between DO and water temperature, 0.75 between turbidity and river flow, and 0.957 between water temperature and air temperature. The lag time of heat transfer from the air to the water was estimated as 24 days. The first order auto-regressive model was appropriate for explaning standardized hourly DO time series. The ARIMA model of (1, 0, 0) type provided relatively satisfactory results for daily DO time series after the removal of significant harmonic value.

  • PDF

A Machine Learning Model for Predicting Silica Concentrations through Time Series Analysis of Mining Data (광업 데이터의 시계열 분석을 통해 실리카 농도를 예측하기 위한 머신러닝 모델)

  • Lee, Seung Hoon;Yoon, Yeon Ah;Jung, Jin Hyeong;Sim, Hyun su;Chang, Tai-Woo;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.511-520
    • /
    • 2020
  • Purpose: The purpose of this study was to devise an accurate machine learning model for predicting silica concentrations following the addition of impurities, through time series analysis of mining data. Methods: The mining data were preprocessed and subjected to time series analysis using the machine learning model. Through correlation analysis, valid variables were selected and meaningless variables were excluded. To reflect changes over time, dependent variables at baseline were treated as independent variables at later time points. The relationship between independent variables and the dependent variable after n point was subjected to Pearson correlation analysis. Results: The correlation (R2) was strongest after 3 hours, which was adopted as a dependent variable. According to root mean square error (RMSE) data, the proposed method was superior to the other machine learning methods. The XGboost algorithm showed the best predictive performance. Conclusion: This study is important given the current lack of machine learning studies pertaining to the domestic mining industry. In addition, using time series analysis in mining data will show further improvement. Before establishing a predictive model for the proposed method, predictions should be made using data with time series characteristics. After doing this work, it should also improve prediction accuracy in other domains.

Outlier detection in time series data (시계열 자료에서의 특이치 발견)

  • Choi, Jeong In;Um, In Ok;Choa, Hyung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.907-920
    • /
    • 2016
  • This study suggests an outlier detection algorithm that uses quantile autoregressive model in time series data, eventually applying it to actual stock manipulation cases by comparing its performance to existing methods. Studies on outlier detection have traditionally been conducted mostly in general data and those in time series data are insufficient. They have also been limited to a parametric model, which is not convenient as it is complicated with an analysis that takes a long time. Thus, we suggest a new algorithm of outlier detection in time series data and through various simulations, compare it to existing algorithms. Especially, the outlier detection algorithm in time series data can be useful in finding stock manipulation. If stock price which had a certain pattern goes out of flow and generates an outlier, it can be due to intentional intervention and manipulation. We examined how fast the model can detect stock manipulations by applying it to actual stock manipulation cases.