References
- Afshin, G., Vladik, K., and Olga, K. 2018. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Departmental Technical Reports(CS). 1209.
- Breiman, L. 2001. Random forests, Machine Learning 45(1):5-32. https://doi.org/10.1023/A:1010933404324
- Chen, T. and Guestrin, C. 2016. Xgboost : A scalable tree boosting system. Proceedings of the 22nd acm SigkddInternational Conference on Knowledge Discovery and Data mining. pp. 785-794.
- Choi, S.-H. and Hur, J. 2020. Optimized-XGBoost Learner Based Bagging Model for Photovoltaic Power Forecasting. The transactions of The Korean Institute of Electrical Engineers 69(7):978-984. https://doi.org/10.5370/KIEE.2020.69.7.978
- Gorain, B. K. FRANZIDIS, J. P. and MANLAPIG, E. V. 1995. Effect of Bubble Size, Gas Holdup and Superficial Gas Velocity on Metallurgical Performance in an Industrial Flotation Cell. JKMRC Report.
- Heimes, F. O. 2008. Recurrent neural networks for remaining useful life estimation. In 2008 international conference on prognostics and health management. IEEE. pp. 1-6.
- Hur, N. K., Jung, J. Y. and Kim, S. 2009. A Study on Air Demand Forecasting Using Multivariate Time Series Models. The Korean Journal of Applied Statistics 22.5:1007-1017. https://doi.org/10.5351/KJAS.2009.22.5.1007
- Jang, D. R. and Park. M. J. 2020. A Study on the Art Price Prediction Model Using the Random Forest. Journal of Applied Reliability 20(1):4-42.
- Jang, H. D. 2019. Australian Mining Transformation and Future Prospects in Response to the 4th Industrial Revolution. Journal of the Korean Society of Mineral and Energy Resources Engineers 56(5):490-513. https://doi.org/10.32390/ksmer.2019.56.5.490
- Jeong, H. S. 2018. Correlation Measure for Big Data. Journal of Applied Reliability 18(3):208-212. https://doi.org/10.33162/JAR.2018.09.18.3.208
- Kim, J. K., Lee, K. B., and Hong, S. G. 2017. ECG-based Biometric Authentication Using Random Forest. Journal of the Institute of Electronics and Information Engineers 54(6):100-105. https://doi.org/10.5573/ieie.2017.54.6.100
- Kohavi. and Ron. 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. International Joint Conference on Artificial Intelligence 14(12):1137-43
- Kwame O, E. 2019. Machine Learning-based Quality Prediction in the Froth Flotation Process of Mining: Master's Degree Thesis in Microdata Analysis.
- Lee, C., Kim, S. M., and Choi, Y. 2019. Case Analysis for Introduction of Machine Learning Technology to the Mining Industry. Korean Society for Rock Mechanics. TUNNEL AND UNDERGROUND SPACE 29(1). 1-11. https://doi.org/10.7474/TUS.2019.29.1.001
- Lee, Y. H., Song, M. S., Ha, S. J., Baek, T. H., and Son, S. Y. 2016. Big data Cloud Service for Manufacturing Process Analysis. The Korean Journal of BigData 1(1):41-51.
- Molinaro., Annette, M., Richard, S., and Ruth M. P. 2005. Prediction Error Estimation: A Comparison of Resampling Methods. Bioinformatics (Oxford, England) 21(15). Oxford University Press: 3301-7. https://doi.org/10.1093/bioinformatics/bti499
- Park, K. T., and Baek, J. G. 2017. Time Series Prediction using ARIMA and DBNs with MODWT. Journal of the Korean Institue of Industrial Engineers 43.6:474-481. https://doi.org/10.7232/JKIIE.2017.43.6.474
- Sawyerr, C. T. 1998. Prediction of bubble size distribution in mechanical flotation cells. Journal of the Southern African Institute of Mining and Metallurgy 98(4):179-185.
- Seo, M. Y. and Rhee, J. T. 2003. A Study on the Seasonal Adjustment of Time Series and Demand Forecasting for Electronic Product Sales. Journal of Applied Reliability 3(1):13-39
- Tak, J. H., and Jung, W. 2018. Estimation of Failure Rate of SRU in RADAR System Utilizing Big Data. Journal of Applied Reliability 18(4):339-348. https://doi.org/10.33162/JAR.2018.12.18.4.339
- Yoon, D. H., Kim, S. M., and Kim, D. H. 2019. Clustering of Time Series Data using Deep Learning. Journal of Applied Reliability 19(2):167-178. https://doi.org/10.33162/JAR.2019.06.19.2.167
- Yoon, H. S., Um, M. J., Cho, W. C., and Heo, J. H. 2009. Orographic Precipitation Analysis with Regional Frequency Analysis and Multiple Linear Regression. Journal of Korea Water Resources Association 42(6):465-480. https://doi.org/10.3741/JKWRA.2009.42.6.465