• Title/Summary/Keyword: series model

Search Result 5,386, Processing Time 0.032 seconds

Evaluation of Accuracy and Efficiency of Double Fourier Series (DFS) Spectral Dynamical Core (이중 푸리에 급수 분광법 역학코어의 정확도와 계산 효율성 평가)

  • Beom-Seok Kim;Myung-Seo Koo;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.387-398
    • /
    • 2023
  • The double Fourier series (DFS) spectral dynamical core is evaluated for the two idealized test cases in comparison with the spherical harmonics (SPH) spectral dynamical core. A new approach in calculating the meridional expansion coefficients of DFS, which was recently developed to alleviate a computational error but only applied to the 2D spherical shallow water equation, is also tested. In the 3D deformational tracer transport test, the difference is not conspicuous between SPH and DFS simulations, with a slight outperformance of the new DFS approach in terms of undershooting problem. In the baroclinic wave development test, the DFS-simulated wave pattern is quantitatively similar to the SPH-simulated one at high resolutions, but with a substantially lower computational cost. The new DFS approach does not offer a salient advantage compared to the original DFS while computation cost slightly increases. This result suggests that the current DFS spectral method can be a practical and alternative dynamical core for high-resolution global modeling.

Black-Litterman Portfolio with K-shape Clustering (K-shape 군집화 기반 블랙-리터만 포트폴리오 구성)

  • Yeji Kim;Poongjin Cho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.63-73
    • /
    • 2023
  • This study explores modern portfolio theory by integrating the Black-Litterman portfolio with time-series clustering, specificially emphasizing K-shape clustering methodology. K-shape clustering enables grouping time-series data effectively, enhancing the ability to plan and manage investments in stock markets when combined with the Black-Litterman portfolio. Based on the patterns of stock markets, the objective is to understand the relationship between past market data and planning future investment strategies through backtesting. Additionally, by examining diverse learning and investment periods, it is identified optimal strategies to boost portfolio returns while efficiently managing associated risks. For comparative analysis, traditional Markowitz portfolio is also assessed in conjunction with clustering techniques utilizing K-Means and K-Means with Dynamic Time Warping. It is suggested that the combination of K-shape and the Black-Litterman model significantly enhances portfolio optimization in the stock market, providing valuable insights for making stable portfolio investment decisions. The achieved sharpe ratio of 0.722 indicates a significantly higher performance when compared to other benchmarks, underlining the effectiveness of the K-shape and Black-Litterman integration in portfolio optimization.

Generation of Synthetic Time Series Wind Speed Data using Second-Order Markov Chain Model (2차 마르코프 사슬 모델을 이용한 시계열 인공 풍속 자료의 생성)

  • Ki-Wahn Ryu
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2023
  • In this study, synthetic time series wind data was generated numerically using a second-order Markov chain. One year of wind data in 2020 measured by the AWS on Wido Island was used to investigate the statistics for measured wind data. Both the transition probability matrix and the cumulative transition probability matrix for annual hourly mean wind speed were obtained through statistical analysis. Probability density distribution along the wind speed and autocorrelation according to time were compared with the first- and the second-order Markov chains with various lengths of time series wind data. Probability density distributions for measured wind data and synthetic wind data using the first- and the second-order Markov chains were also compared to each other. For the case of the second-order Markov chain, some improvement of the autocorrelation was verified. It turns out that the autocorrelation converges to zero according to increasing the wind speed when the data size is sufficiently large. The generation of artificial wind data is expected to be useful as input data for virtual digital twin wind turbines.

Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products (자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로)

  • Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2014
  • Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

The research on daily temperature using continuous AR model (일별 온도의 연속형 자기회귀모형 연구 - 6개 광역시를 중심으로 -)

  • Kim, Ji Young;Jeong, Kiho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.155-167
    • /
    • 2014
  • This study uses a continuous autoregressive (CAR) model to analyze daily average temperature in six Korean metropolitan cities. Data period is Jan. 1, 1954 to Dec. 31, 2010 covering 57 years. Using a relative long time series reveals that the linear time trend components are all statistically significant in the six cities, which was not shown in previous studies. Particularly the plus sign of its coefficient implies the effect on Korea of the global warming. Unit-root test results are that the temperature time series are stationary without unit-root. It turns out that CAR(3) is suitable for stochastic component of the daily temperature. Since developing suitable continuous stochastic model of the underlying weather related variables is crucial in pricing the weather derivatives, the results in this study will likely prove useful in further future studies on pricing weather derivatives.

A Cross-country Study on Diffusions of Communication Technologies : The Internet, Mobile Phone, and Telephone (정보통신 서비스 확산의 대체, 보완현상에 관한 국제 비교 연구 : 인터넷, 휴대전화, 유선전화를 중심으로)

  • Lee, Jong-Su;Lee, Min-Kyu
    • Journal of Information Management
    • /
    • v.37 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • Due to the dramatic development of the Internet, the ICT market has changed from a voice based services to data based services. Substitution and complementary dynamism has emerged from communication technology services such as the Internet, mobile phone, and telephone. This paper analyses diffusion patterns of communication technologies such as the Internet, cellular phones, and telephones in different country groups. We estimate modified logistic growth model using time series data for the years 1975-2002. As a result, it is possible to categorize country groups according to the patterns of diffusions. This research creates essential information to forecast demand for new services based on incumbent services as well as provide information on strategies for entering the network industry.

Predicting ozone warning days based on an optimal time series model (최적 시계열 모형에 기초한 오존주의보 날짜 예측)

  • Park, Cheol-Yong;Kim, Hyun-Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.293-299
    • /
    • 2009
  • In this article, we consider linear models such as regression, ARIMA (autoregressive integrated moving average), and regression+ARIMA (regression with ARIMA errors) for predicting hourly ozone concentration level in two areas of Daegu. Based on RASE(root average squared error), it is shown that the ARIMA is the best model in one area and that the regression+ARIMA model is the best in the other area. We further analyze the residuals from the optimal models, so that we might predict the ozone warning days where at least one of the hourly ozone concentration levels is over 120 ppb. Based on the training data in the years from 2000 to 2003, it is found that 35 ppb is a good cutoff value of residulas for predicting the ozone warning days. In on area of Daegu, our method predicts correctly one of two ozone warning days of 2004 as well as all of the remaining 364 non-warning days. In the other area, our methods predicts correctly all of one ozone warning days and 365 non-warning days of 2004.

  • PDF

Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method (이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.83-105
    • /
    • 2019
  • This study aims to suggest an effective method for the automatic classification of keywords with similar patterns by calculating pattern similarity of temporal data. For this, large scale news on the Web were collected and time series data composed of 120 time segments were built. To make training data set for the performance test of the proposed model, 440 representative keywords were manually classified according to 8 types of trend. This study introduces a Dynamic Time Warping(DTW) method which have been commonly used in the field of time series analytics, and proposes an application model, MA-DTW based on a Moving Average(MA) method which gives a good explanation on a tendency of trend curve. As a result of the automatic classification by a k-Nearest Neighbor(kNN) algorithm, Euclidean Distance(ED) and DTW showed 48.2% and 66.6% of maximum micro-averaged F1 score respectively, whereas the proposed model represented 74.3% of the best micro-averaged F1 score. In all respect of the comprehensive experiments, the suggested model outperformed the methods of ED and DTW.

Daily Stock Price Forecasting Using Deep Neural Network Model (심층 신경회로망 모델을 이용한 일별 주가 예측)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.39-44
    • /
    • 2018
  • The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.