• Title/Summary/Keyword: series inductance

Search Result 158, Processing Time 0.024 seconds

Buck and Half Bridge Series DC-DC Converter (강압형과 하프 브리지 직렬형 DC-DC 컨버터)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

A Novel SLLC Series Resonant Converter for The Boost DC/DC Converter (SLLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Kim, Eun-Soo;Kang, Sung-In;Chung, Bong-Geun;Cha, In-Su;Yoon, Jeong-Phil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.56-64
    • /
    • 2007
  • Recently, the high frequency link boost DC/DC converter has been used widely for PCS (Power Conditioning System) because of the requirements of small size and low cost. However, the high frequency link boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have some problems like high conduction losses and high surge voltage due to high circulating current and leakage inductance, respectively. To improve these problems, a novel secondary LLC (called SLLC) series resonant converter is proposed in this paper and its theoretical analysis, its operating waveforms, simulation and experimental results for a boost DC/DC converter using SLLC series resonant topology verifies the proposed topology. 800W experimental prototype is tested.

Implementation of a ZVS Three-Level Converter with Series-Connected Transformers

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.177-185
    • /
    • 2013
  • This paper studies a soft switching DC/DC converter to achieve zero voltage switching (ZVS) for all switches under a wide range of load condition and input voltage. Two three-level PWM circuits with the same power switches are adopted to reduce the voltage stress of MOSFETs at $V_{in}/2$ and achieve load current sharing. Thus, the current stress and power rating of power semiconductors at the secondary side are reduced. The series-connected transformers are adopted in each three-level circuit. Each transformer can be operated as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer from the input side to the output side. Therefore, no output inductor is needed at the secondary side. Two center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Due to the resonant behavior by the resonant inductance and resonant capacitance at the transition interval, all switches are turned on at ZVS. Experiments based on a 1kW prototype are provided to verify the performance of proposed converter.

개선된 자속구속형 전류제한기의 동작 특성 분석

  • Kim, Yong-Jin;Du, Ho-Ik;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.215-215
    • /
    • 2009
  • Improved flux-lock type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through initial line current after fault initiation. through the analysis, it was shown that the smaller initial line current is superior to current limiting characteristics and a point of view of power burden of the YBCO coated conductor.

  • PDF

Microprocessor Controlled Four-Quadrant Operation of an Electric Vehicle (마이크로 프로세서를 이용한 전동차의 4상한 운전에 관한 연구)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Lim, Eung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.240-244
    • /
    • 1989
  • This paper describes an electric vehicle DC-DC drive system capable of delivering motoring current and of generating braking current. The power transistor chopper Is adopted to operate a DC series motor. The transistor chopper adopted, a high chopping frequency and avoids additional inductance In series with the armature winding. The four-quadrant drive is applied to save the energy. The energy saving is critical in operating the Independent power source electric vehicle. Using software simulation, regeneration and braking characteristics are investigated. The microprocessor-based controller is used to operate the whole system.

  • PDF

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.

A High efficient realization for quantity of ultrasonic motor (초음파 모터의 정량적 최대효율 구현)

  • Lee, Young-Dae;Lee, Eul-Jae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2151-2155
    • /
    • 1998
  • The traveling wave type ultrasonic motor(USM) has no electro-magnetic circuits( coil or core). The driving principle of the USM is based on high-frequency mechanical vibrations and frictional force. The USM, thus, is fed by two-phase high - frequency sinusoidal inverter using its series resonant parasitic components. For the using of series resonant type inverter, it should be needed to a USM parasitic capacitance and a proper inductor chosen. In this paper, the values of optimal inductance are designed and the efficiency of USM drives is achieved. The effectiveness of the proposed design is demonstrated by experiments.

  • PDF

Analysis of D-C Shunt Motor Characteristics, driving D-C Series Generator (직통직권 발전기에 의한 직통분권 전동기의 특성해석)

  • 이승원;한송엽
    • 전기의세계
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 1967
  • There are many kinds of motors operating by rated voltage which is constant. In this paper, the characteristics of separately excited direct current motor is analyzed when its terminal voltage is varied as its load current. As for this source, direct current generator of a series field is used, and it is driven at constant speed by a primemover. The induced voltage of the generator is propotional to its load current but it saturates as its load current is large. The charateristics of motor is studied by analog computer because of the nonlinearity of generator. The results are as follows: (1) The load current and the rotor speed of motor increase as the load of motor increases. But the speed of rotor decreases for the influence of the saturation of the iron of generator field when its load current is large. (2) Decreasing the inertia of motor and increasing the inductance of the armature circuit improve the stability of motor and the region of stable state. (3) By changing the field current of the motor, the speed and the direction of rotor can be controlled in wide range.

  • PDF

Increase of Operational Current in a SFCL using Series or Parallel Coupling of Coils (코일의 직.병렬결합을 이용한 초전도 사고전류제한기의 동작전류 증가)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.46-51
    • /
    • 2007
  • The fault current limiting characteristics of superconducting fault current limiter(SFCL) using magnetic coupling of two coils were investigated. This SFCL consists of a high-TC superconducting(HTSC) element and two coils with series or parallel connection on the same iron. In normal time, the inner magnetic fluxes generated by two coils are canceled in case that the HTSC element keeps superconducting state. However, in case that the resistance of the HTSC element happens by a short-circuit the magnetic fluxes, not cancelled, induce the voltages across two coils and the fault current can be limited by the impedance of this SFCL. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the operating current of this SFCL increased more than that of HTSC element's independent operation.

A Study on the Torque Ripple Reduction on Brushless DC Motor (브러시리스 직류 전동기의 토크리플 저감에 관한 연구)

  • Ryoo, Si-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.2
    • /
    • pp.7-14
    • /
    • 2005
  • This paper presents a method to reduce torque ripple of brushless DC motor by compensating phase delay due to winding inductance. For considering torque ripple comes from the phase winding inductance, torque equation of one phase is derived as Fourier series that is function of the delay. From the equation, also the resultant equation that the current delay is compensated is derived. It is validated that the compensated torque has a form of Fourier series for rectangular wave that is ideal torque, and torque ripple is reduced, consequently. Experimental method for the compensation is realized by replacing switching pattern of inverter by pattern of compensated rotor position. The effectiveness of the proposed method to reduce torque ripple has been demonstrated by the simulation and experimental results using 3 phase 4 pole brushless DC moor.