• Title/Summary/Keyword: sequential prediction error method

Search Result 18, Processing Time 0.026 seconds

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

Development of Analysis System for Sheet Metal Forming (박판금속 성형공정 해석시스템 개발)

  • 정완진;조진우
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 1999
  • An analysis system for sheet metal forming(SAT_STAMP) has been developed to improve the design and tryout process by predicting the deformation behavior more precisely. This analysis system consists of forming analysis, springback analysis and post processor modules. The more accurate prediction of stress history can be achieved due to the improved contact algorithm. Continuous simulation of sequential processes can be carried out conveniently without interruption by the improved data management of the developed system. The error of data transfer between forming analysis and springback analysis is minimized using the proper shell element. Several benchmark test results and practical results are presented to show the effectiveness and reliability of this program.

  • PDF

Experimental Study on Modal Parameter Estimation of Structures (구조물의 자유진동특성 추정을 위한 실험적 연구)

  • 윤정방;이형진
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.137-144
    • /
    • 1994
  • As for the safety evaluation of existing large-scale structures, methods for the estimation of structural and dynamic properties are studied. Sequential prediction error method in time domain and frequency response function estimators in frequency domain are examined. For this purpose, impact tests are performed on a steel frame structure with 2 bays and 3 floors. Results from both methods are found to be consistent to each others. However those from the finite-element analysis are slightly different from the experimental results. The discrepancies may be caused by the improper modeling of the complex behavior at the connection joints of the model structure.

  • PDF

An Improved Calibration Method for the COCOMO II Post-Architecture Model

  • Yoon, Myoung-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.2
    • /
    • pp.47-55
    • /
    • 2000
  • To date many software engineering cost models have been developed to predict cost, schedule, and effort of the software under development. The COCOMO Ⅱ is well- suited for the new software development life cycle such as non-sequential and rapid- development processes. The traditional regression approach based on the least square criterion is the most commonly used technique for empirical calibration in the COCOMO Ⅱ model. It has a few assumptions frequently violated by software engineering data sets. The source data is also generally imprecise in reporting size effort, and cost-driver ratings, particularly across different organizations. And that the outlier for the source data is a peculiarity and indicates a data point. To cope with difficulties, in this paper, we propose a new regression method for calibrating COCOMO Ⅱ post-architecture model based on the minimum relative error(MRE) criterion. The characteristic of the proposed method is insensitive to the extreme values of the data in the empirical calibration. As the experimental results, It is evident that our proposed calibration method MRE was shown to be superior to the traditional regression approach for model calibration, as illustrated by the values obtained for standard deviation(^σ), and prediction at level LPRED(L) measures.

  • PDF

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

Efficient Structral Safety Monitoring of Large Structures Using Substructural Identification (부분구조추정법을 이용한 대형구조물의 효율적인 구조안전도 모니터링)

  • 윤정방;이형진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.1-15
    • /
    • 1997
  • This paper presents substructural identification methods for the assessment of local damages in complex and large structural systems. For this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for a substructure to process the measurement data impaired by noises. Using the substructural methods, the number of unknown parameters for each identification can be significantly reduced, hence the convergence and accuracy of estimation can be improved. Secondly, the damage index is defined as the ratio of the current stiffness to the baseline value at each element for the damage assessment. The indirect estimation method was performed using the estimated results from the identification of the system matrices from the substructural identification. To demonstrate the proposed techniques, several simulation and experimental example analyses are carried out for structural models of a 2-span truss structure, a 3-span continuous beam model and 3-story building model. The results indicate that the present substructural identification method and damage estimation methods are effective and efficient for local damage estimation of complex structures.

  • PDF

Complexity-based Sample Adaptive Offset Parallelism (복잡도 기반 적응적 샘플 오프셋 병렬화)

  • Ryu, Eun-Kyung;Jo, Hyun-Ho;Seo, Jung-Han;Sim, Dong-Gyu;Kim, Doo-Hyun;Song, Joon-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.503-518
    • /
    • 2012
  • In this paper, we propose a complexity-based parallelization method of the sample adaptive offset (SAO) algorithm which is one of HEVC in-loop filters. The SAO algorithm can be regarded as region-based process and the regions are obtained and represented with a quad-tree scheme. A offset to minimize a reconstruction error is sent for each partitioned region. The SAO of the HEVC can be parallelized in data-level. However, because the sizes and complexities of the SAO regions are not regular, workload imbalance occurs with multi-core platform. In this paper, we propose a LCU-based SAO algorithm and a complexity prediction algorithm for each LCU. With the proposed complexity-based LCU processing, we found that the proposed algorithm is faster than the sequential implementation by a factor of 2.38 times. In addition, the proposed algorithm is faster than regular parallel implementation SAO by 21%.