• 제목/요약/키워드: sequential pattern mining

검색결과 82건 처리시간 0.021초

서픽스 검사를 이용한 단계적 순차패턴 분할 탐사 방법 (A Partition Mining Method of Sequential Patterns using Suffix Checking)

  • 허용도;조동영;박두순
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.590-598
    • /
    • 2002
  • 효율적인 순차패턴 마이닝을 위해서는 후보패턴의 생성 비용을 줄이고 동시에 생성된 후보패턴에 대한 탐색공간을 줄여야 한다. 그러나 이전에 개발된 알고리즘들은 이러한 문제들을 효율적으로 해결하지 못하고 있다. 특히 Apriori-like 방법들은 알고리즘은 단순하지만 많은 크기의 후보패턴 집합생성, 대용량 데이터 베이스의 반복적인 탐사 등의 문제점이 있고, PrefixSpan[2]은 단계별로 분할된 프레픽스 프로젝티드(prefix projected) 데이터 베이스들을 구성 하여 후보패턴의 지지도 계산을 위한 탐색 공간을 줄이지만 프로젝티드 데이타베이스들의 구성비용이 크다는 문제점이 있다. 이러한 문제점들의 개선을 위해 본 논문에서는 새로운 순차패턴 마이닝 방법인 Suffixspan(Suffix Checked Sequential Pattern mining)을 제 안한다. Suffixspan은 순차패턴 집합의 단계별 분할특성과 서픽스(suffix) 특성을 이용하여 적은 비용으로 작은 크기의 후보패턴 집합을 생성하고, 1-프레픽스 프로젝티드 데이타베이스를 구성하여 후보패턴 검사를 위한 탐색공간을 줄인다.

  • PDF

효율적인 닫힌 빈발 시퀀스 마이닝 (An Efficient Mining for Closed Frequent Sequences)

  • 김형근;황환규
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.163-173
    • /
    • 2005
  • Recent sequential pattern mining algorithms mine all of the frequent sequences satisfying a minimum support threshold in a large database. However, when a frequent sequence becomes very long, such mining will generate an explosive number of frequent sequence, which is prohibitively expensive in time. In this paper, we proposed a novel sequential pattern algorithm using only closed frequent sequences which are small subset of very large frequent sequences. Our algorithm extends the sequence by depth-first search strategy with effective pruning. Using bitmap representation of underlying databases, we can obtain a closed frequent sequence considerably faster than the currently reported methods.

  • PDF

스트림 데이터에서 동적 가중치를 이용한 순차 패턴 탐사 기법 (A Sequential Pattern Mining based on Dynamic Weight in Data Stream)

  • 최필선;김환;김대인;황부현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권2호
    • /
    • pp.137-144
    • /
    • 2013
  • 순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 탐사하는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용 가능한 탐사 기법으로 동적인 가중치 변화를 탐색 과정에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터가 들어오는 스트림 환경에서 동적 가중치를 적용하여 빈발한 이벤트들을 탐사하는 새로운 순차 패턴 탐사 기법을 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여주고 해시 구조를 통한 데이터 입출력으로 빈발한 순차 패턴을 빠르게 탐사할 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다. 제안하는 기법은 다른 가중치 순차 패턴 탐사 기법과의 비교를 통해 동적 가중치 탐사 기법의 중요성을 보인다.

Detecting smartphone user habits using sequential pattern analysis

  • Lu, Dang Nhac;Nguyen, Thu Trang;Nguyen, Thi Hau;Nguyen, Ha Nam;Choi, Gyoo Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권1호
    • /
    • pp.20-22
    • /
    • 2015
  • Recently, the study of smart phone user habits has become a highly focused topic due to the rapid growth of the smart phone market. Indeed, sequential pattern analysis methods were efficiently used for web-based user habit mining long time ago. However, by means of simulations, it has been observed that these methods might fail for smart phone-based user habit mining. In this paper, we propose a novel approach that leads to a considerably increased performance of the traditional sequential pattern analysis methods by reasonably cutting off each chronological sequence of user logs on a device into shorter ones, which represent the sequential user activities in various periods of a day.

확률적 다차원 연속패턴의 생성을 위한 효율적인 마이닝 알고리즘 (An Efficient Mining Algorithm for Generating Probabilistic Multidimensional Sequential Patterns)

  • 이창환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권2호
    • /
    • pp.75-84
    • /
    • 2005
  • 연속패턴은 다양한 분야에서 사용되는 데이타 마이닝 기법의 한 종류이다. 하지만 현재의 연속 패턴 방법은 한개의 속성내에서의 패턴만을 감지할 수 있으며 속성간의 패턴을 생성할 수 없다. 다차원의 연속패턴은 일차원에 비하여 훤씬 유용한 정보를 제공할 수 있다. 본 연구에서는 Hellinger 엔트로피 함수를 사용하여 다차원의 연속패턴을 생성하는 방법을 게시한다 기존의 연속패턴방법과 달리 본 방법에서는 각 연속패턴의 중요도를 자동으로 계산할 수 있다. 또한 계산의 복잡도를 감소시키기 위한 다수의 법칙이 개발되었으며 다수의 실험 결과를 제시하였다.

근사 알고리즘을 이용한 순차패턴 탐색 (Searching Sequential Patterns by Approximation Algorithm)

  • 산사볼트가람라흐차;황영섭
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.29-36
    • /
    • 2009
  • 서열데이터베이스에 있는 자주 발현하는 부분 서열을 패턴으로 찾아내는 순차패턴 탐색은 넓은 응용 분야를 가지는 중요한 데이터 마이닝 문제이다. DNA 서열에서 순차패턴이 모티프가 될 수 있으므로 DNA 서열에서 순차패턴을 찾는 것을 연구하였다. 대부분의 기존 마이닝 방법은 순차패턴의 정의에 따라 정확한 정합에 주력하여 노이즈가 있는 환경이나 실제 문제에서 발생하는 부정확한 데이터에 대하여 제대로 작동하지 않을 수 있다. 이러한 문제가 생물 데이터인 DNA 서열에서 자주 나타난다. 이러한 문제를 다루기 위한 근사 정합 방법을 연구하였다. 본 연구의 아이디어는 자주 발생하는 패턴을 근사 패턴이라 부르는 그룹으로 분류할 수 있다는 관찰에서 기반을 둔다. 기존의 Prefixspan 알고리즘은 주어진 긴 서열에서 순차패턴을 잘 찾을 수 있다. 본 연구는 Prefixspan 알고리즘을 개선하여 유사한 순차패턴을 찾을 수 있게 하였다. 실험 결과는 PreFixSpan보다 제안한 방법이 패턴 길이가 4일 때, 근사 순차패턴의 빈도가 5배 높아짐을 보였다.

비트맵을 사용한 닫힌 빈발 시퀀스 마이닝 (Mining Frequent Closed Sequences using a Bitmap Representation)

  • 김형근;황환규
    • 정보처리학회논문지D
    • /
    • 제12D권6호
    • /
    • pp.807-816
    • /
    • 2005
  • 순차 패턴 탐사에 대한 연구는 대용량의 데이터베이스에서 사용자에 의해 주어지는 최소 지지도를 만족하는 빈발 시퀀스를 찾는 문제를 다룬다. 하지만 현재까지 이루어진 순차 패턴 탐사 방법은 빈발 시퀀스들의 길이가 길어지거나 최소 지지도가 상대적으로 낮게 주어진 상황에서는 생성되는 시퀀스가 기하급수적으로 많아져서 성능이 급격히 저하되는 문제점을 가지고 있다. 본 논문에서는 이 문제를 해결하기 위해서 모든 빈발 시퀀스의 정보를 포함하며 그 수가 현저히 적은 닫힌 빈발 시퀀스를 찾는 방법을 제안한다. 제안하는 알고리즘은 효율적으로 가지치기를 수행하기 위해서 깊이우선 탐색 방법으로 후보 시퀀스를 생성하고 데이터베이스를 비트맵으로 표현하여 비트 연산으로 지지도를 효율적으로 계산한다. 또한, 비트맵으로 표현된 시퀀스 특성을 이용하여 가지치기할 시퀀스를 적은 연산 비용으로 찾을 수 있다. 이런 장점을 통하여 제안한 방법이 지금까지 제안된 알고리즘보다 훨씬 빨리 닫힌 빈발 시퀀스를 찾는 것을 성능 실험을 통하여 확인하였다.

순차 데이터 스트림에서 발생 간격 제한 조건을 활용한 빈발 순차 패턴 탐색 (Mining Frequent Sequential Patterns over Sequence Data Streams with a Gap-Constraint)

  • 장중혁
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권9호
    • /
    • pp.35-46
    • /
    • 2010
  • 순차 패턴 탐색은 데이터 마이닝의 주요 기법 중의 하나로서 웹기반 시스템, 전자상거래, 생물정보학 및 USN 환경 등과 같은 여러 컴퓨터 응용 분야에서 생성되는 데이터를 효율적으로 분석하기 위하여 널리 활용되고 있다. 한편 이들 응용 분야에서 생성되는 정보들은 근래들어 한정적인 데이터 집합이 아닌 구성요소가 지속적으로 생성되는 데이터 스트림 형태로 생성되고 있다. 이러한 상황을 고려하여 데이터 스트림에서 순차패턴 탐색에 대한 연구들도 활발히 진행되고 있다. 하지만 이전의 연구들은 주로 분석 대상 데이터 스트림에서 단순 순차패턴을 구하는 과정에서 마이닝 수행 시간이나 메모리 사용량 등을 줄이는데 초점을 맞추고 있으며, 따라서 해당 데이터 스트림의 특성을 효율적으로 표현할 수 있는 보다 중요하고 의미있는 패턴들을 탐색하기 위한 연구는 거의 진행되지 못하고 있다. 본 논문에서는 데이터 스트림에서 보다 의미있는 순차패턴을 탐색하기 위한 방법으로 구성요소의 발생 간격 제한 조건을 활용한 빈발 순차패턴 탐색 방법을 제안한다. 먼저 발생 간격 정의 기준 및 발생 간격제한 빈발 순차패턴의 개념을 제시하고, 이어서 데이터 스트림에서 발생 간격 제한 조건을 적용하여 빈발 순차패턴을 효율적으로 탐색할 수 있는 마이닝 방법을 제안한다.

순차 패턴 마이닝 기법을 이용한 개인 맞춤형 TV 프로그램 스케줄러 (A Personalized Automatic TV Program Scheduler using Sequential Pattern Mining)

  • 표신지;김은희;김문철
    • 방송공학회논문지
    • /
    • 제14권5호
    • /
    • pp.625-637
    • /
    • 2009
  • 방송 프로그램 콘텐츠들의 증가와 콘텐츠 접근 방법의 다양화로 따라 사용자는 기존의 단순한 방송 시청 환경에서 보다 복합적인 환경에서 다양한 콘텐츠를 접할 수 있게 되었다. 따라서 사용자는 익숙지 않은 다양한 콘텐츠들 중에서 자신이 시청하기 원하는 콘텐츠를 찾고 그것들을 원하는 시간에 시청하기 위해 전보다 많은 노력을 기울이게 되었다. 또한 사용자는 대체로 자신만의 일관성 있는 시청 패턴으로 프로그램을 시청한다. 본 논문에서는 사용자의 개인적인 시청 특성을 발견하여 사용자의 수고를 줄이고 프로그램 시청의 편의성을 제공하기 위해 순차 패턴 마이닝 기법을 이용하여, 개인 맞춤형 TV 프로그램 스케줄러를 제안한다. 이를 위해 개인 맞춤형 TV 프로그램 스케줄 추천 시스템을 제안하였으며, 사용자들의 TV 프로그램 시청 기록을 바탕으로 TV시청 환경에 적합한 순차 패턴 마이닝 기법을 제안하였다. 또한 개인 사용자의 암시적인 선호도를 추출하여 TV 프로그램 추천에 적용, 개인 맞춤형 TV 프로그램 스케줄을 구성하여 추천할 수 있도록 하였다. 이러한 TV 프로그램 스케줄 추천 시스템은 향후 IPTV의 VoD 특성을 고려한 프로그램 스케줄 추천 시스템으로 확장 가능하다.

대용량 순차 데이터베이스에서 근사 순차패턴 탐색 (Mining Approximate Sequential Patterns in a Large Sequence Database)

  • 금혜정;장중혁
    • 정보처리학회논문지D
    • /
    • 제13D권2호
    • /
    • pp.199-206
    • /
    • 2006
  • 순차패턴 탐색은 다양한 응용 분야에서 매우 중요한 데이터 마이닝 작업으로 간주된다. 그러나 기존의 순차패턴 탐색 방법들은 길이가 긴 순차패턴이나 노이즈 정보를 다수 포함한 데이터베이스에 대한 마이닝에서는 한계가 있다. 해당 방법들은 매우 짧고 사소한 패턴들은 탐색하지만 다수의 순차 정보들에서 공유되는 중요 패턴들을 분석하는데 어려움을 겪는다. 본 논문에서는 이러한 문제를 해결하기 위한 방법으로 대용량 데이터베이스에 대한 근사 순차패턴 탐색 방법을 제안한다. 근사 순차패턴은 다수의 순차 정보들에서 근사적으로 공유되는 순차패턴을 의미한다. 제안된 방법은 두 과정으로 구분된다. 하나는 유사도에 따라 분석 대상 순차 정보들을 몇 개의 군집으로 나누는 과정이며, 다른 하나는 다중 정렬 방식을 적용하여 각 군집으로부터 대표 패턴을 찾는 과정이다. 이를 위해서 다수의 순차 정보들을 하나로 표현할 수 있는 가중치 순차패턴을 제시하며, 다수의 순차 정보들은 가중치 순차패턴 형태로 통합된다. 이렇게 통합된 정보를 가진 각 가중치 순차패턴을 이용하여 여러 순차 정보와 근사한 하나의 대표 패턴을 생성한다. 끝으로, 다양한 실험을 통해서 제안된 방법의 유용성을 검증한다.