• Title/Summary/Keyword: sequential data

Search Result 1,105, Processing Time 0.03 seconds

The Scale Ratio Testing of Multiple Outliers in Linear Regression

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.673-685
    • /
    • 2003
  • In this paper we consider the problem of identifying and testing outliers in linear regression. First we consider the problem for testing the null hypothesis of no outliers. A test based on the ratio of two residual scale estimates is proposed. We show the asymptotic distribution of the test statistics by Monte Carlo simulation and investigate its properties. Next we consider the problem of identifying the outliers. A forward sequential procedure using the suggested test is proposed and shown to perform fairly well. Unlike other forward procedures, the present one is unaffected by masking and swamping effects because the test statistic is based on robust scale estimate.

  • PDF

A study on the speech recognition by HMM based on multi-observation sequence (다중 관측열을 토대로한 HMM에 의한 음성 인식에 관한 연구)

  • 정의봉
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.4
    • /
    • pp.57-65
    • /
    • 1997
  • The purpose of this paper is to propose the HMM (hidden markov model) based on multi-observation sequence for the isolated word recognition. The proosed model generates the codebook of MSVQ by dividing each word into several sections followed by dividing training data into several sections. Then, we are to obtain the sequential value of multi-observation per each section by weighting the vectors of distance form lower values to higher ones. Thereafter, this the sequential with high probability value while in recognition. 146 DDD area names are selected as the vocabularies for the target recognition, and 10LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments by way of the proposed model, for the comparison with it, the experiments by DP, MSVQ, and genral HMM are made with the same data under the same condition. The experiment results have shown that HMM based on multi-observation sequence proposed in this paper is proved superior to any other methods such as the ones using DP, MSVQ and general HMM models in recognition rate and time.

  • PDF

Sequential Design of Inspection Times in Optimally Spaced Inspection

  • Park San-Gun;Kim Hyun-Joong;Lim Jong-Gun
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2006
  • The spacing of inspection times in intermittent inspection is of great interest, and several ways for the determination of inspection times have been proposed. In most inspection schemes including equally spaced inspection and optimally spaced inspection, the best inspection times in each inspection scheme depend on the unknown parameter, and we need an initial guess of the unknown parameter for practical use. Thus it is evident that the efficiency of the resulting inspection scheme highly depends on the choice of the initial value. However, since we can obtain some information about the unknown parameter at each inspection, we may use the accumulated information and adjust the next inspection time. In this paper, we study this sequential determination of the inspection times in optimally spaced inspection.

Bayesian Analysis for Neural Network Models

  • Chung, Younshik;Jung, Jinhyouk;Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.155-166
    • /
    • 2002
  • Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.

Study on the Sequential Generation of Monthly Rainfall Amounts (월강우량의 모의발생에 관한 연구)

  • 이근후;류한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4232-4241
    • /
    • 1976
  • This study was carried out to clarify the stochastic characteristics of monthly rainfalls and to select a proper model for generating the sequential monthly rainfall amounts. The results abtained are as follows: 1. Log-Normal distribution function is the best fit theoretical distribution function to the empirical distribution of monthly rainfall amounts. 2. Seasonal and random components are found to exist in the time series of monthly rainfall amounts and non-stationarity is shown from the correlograms. 3. The Monte Carlo model shows a tendency to underestimate the mean values and standard deviations of monthly rainfall amounts. 4. The 1st order Markov model reproduces means, standard deviations, and coefficient of skewness with an error of ten percent or less. 5. A correlogram derived from the data generated by 1st order Markov model shows the charaterstics of historical data exactly. 6. It is concluded that the 1st order Markov model is superior to the Monte Carlo model in their reproducing ability of stochastic properties of monthly rainfall amounts.

  • PDF

Robust Video-Based Barcode Recognition via Online Sequential Filtering

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2014
  • We consider the visual barcode recognition problem in a noisy video data setup. Unlike most existing single-frame recognizers that require considerable user effort to acquire clean, motionless and blur-free barcode signals, we eliminate such extra human efforts by proposing a robust video-based barcode recognition algorithm. We deal with a sequence of noisy blurred barcode image frames by posing it as an online filtering problem. In the proposed dynamic recognition model, at each frame we infer the blur level of the frame as well as the digit class label. In contrast to a frame-by-frame based approach with heuristic majority voting scheme, the class labels and frame-wise noise levels are propagated along the frame sequences in our model, and hence we exploit all cues from noisy frames that are potentially useful for predicting the barcode label in a probabilistically reasonable sense. We also suggest a visual barcode tracking approach that efficiently localizes barcode areas in video frames. The effectiveness of the proposed approaches is demonstrated empirically on both synthetic and real data setup.

Development of an efficient logic function manipulation system for solving large-scale combiation problems and its application to logic design of sequential circuits (대규모 조합문제를 해결하기 위한 효율적인 논리함수 처리 시스템의 개발과 순서회로 설계에의 응용)

  • 권용진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1613-1621
    • /
    • 1997
  • Many studies on internal data expression to process logic functions efficiently on computer have been doing actively. In this paper, we propose an efficient logic function manipulation system made on the Objected-Oriented manner, where Binary Decision Diagrams(BDD's) are adopted for internal data espressionof logic functions. Thus it is easy to make BDD's presenting combinational problems. Also, we propose a method of applying filtering function for reducing the size of BDD's instead of attributed bits, and add it to the mainpultion system. As a resutls, the space of address is expanded so that the number of node that can be used in the mainpulation system is increased up to 2/sup 27/. Finally, we apply the implemented system to One-Shot state assignment problems of asynchronous sequential circuits and show that it is efficient for the filtering method to reduce the size of BDD's.

  • PDF

Augmentation of Hidden Markov Chain for Complex Sequential Data in Context

  • Sin, Bong-Kee
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.31-34
    • /
    • 2021
  • The classical HMM is defined by a parameter triple �� = (��, A, B), where each parameter represents a collection of probability distributions: initial state, state transition and output distributions in order. This paper proposes a new stationary parameter e = (e1, e2, …, eN) where N is the number of states and et = P(|xt = i, y) for describing how an input pattern y ends in state xt = i at time t followed by nothing. It is often said that all is well that ends well. We argue here that all should end well. The paper sets the framework for the theory and presents an efficient inference and training algorithms based on dynamic programming and expectation-maximization. The proposed model is applicable to analyzing any sequential data with two or more finite segmental patterns are concatenated, each forming a context to its neighbors. Experiments on online Hangul handwriting characters have proven the effect of the proposed augmentation in terms of highly intuitive segmentation as well as recognition performance and 13.2% error rate reduction.

A Sequential Analysis of Mother-Infant Interaction (연속적 분석법을 통한 어머니와 유아의 상호작용 연구)

  • Choae, Jin Kyong
    • Korean Journal of Child Studies
    • /
    • v.6 no.1
    • /
    • pp.3-16
    • /
    • 1985
  • The purpose of this study was the application of sequential analysis to mother-infant interaction data, with particular reference to goodness of fit. The subjects of this study were 22 7- to 16-month-old infants(12 girls and 10 boys) and their mothers. Each mother-infant dyad was videotaped in a 5-min free-play session in the playroom. The videotaped data was transcribed on the behavioral checklist every 3 seconds. The recorded raw data were lagged by one time interval (3 sec.). Transitional probabilities from behavior at time t-1 to behavior at time t were gathered. The statistical analysis of frequency data and transitional probabilities consisted of Z test, t test, and sign test. It was found that regarding 1) direction of effect: the transitional probability of infant vocalization following maternal vocalization was significantly higher than the reverse; the transitional probability of a 'Coacting State' following a 'Mother Active State' was significantly higher than the reverse; the probability of a 'Mother Active State' following 'Quiescent State' was significantly higher than that of a 'Coacting State' following an 'Infant Active State'; 2) sex differences: male infants' transitional probability from an 'Infant Active State' to a 'Quiescent State' was significantly higher than that of female infants; 3) age differences: more than younger infants older infants had higher transitional probabilities from a 'Mother Active State' to a 'Coacting State', from a 'Parallel State' to a 'Coacting State', and from a 'Quiescent State' to a 'Parallel State'. These showed goodness of fit for sex and age differences, particularily for direction of effect.

  • PDF

Mining High Utility Sequential Patterns Using Sequence Utility Lists (시퀀스 유틸리티 리스트를 사용하여 높은 유틸리티 순차 패턴 탐사 기법)

  • Park, Jong Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.51-62
    • /
    • 2018
  • High utility sequential pattern (HUSP) mining has been considered as an important research topic in data mining. Although some algorithms have been proposed for this topic, they incur the problem of producing a large search space for HUSPs. The tighter utility upper bound of a sequence can prune more unpromising patterns early in the search space. In this paper, we propose a sequence expected utility (SEU) as a new utility upper bound of each sequence, which is the maximum expected utility of a sequence and all its descendant sequences. A sequence utility list for each pattern is used as a new data structure to maintain essential information for mining HUSPs. We devise an algorithm, high sequence utility list-span (HSUL-Span), to identify HUSPs by employing SEU. Experimental results on both synthetic and real datasets from different domains show that HSUL-Span generates considerably less candidate patterns and outperforms other algorithms in terms of execution time.