• Title/Summary/Keyword: sequential convex programming

Search Result 14, Processing Time 0.025 seconds

Trajectory Optimization for Impact Angle Control based on Sequential Convex Programming (순차 컨벡스 프로그래밍을 이용한 충돌각 제어 비행궤적 최적화)

  • Kwon, Hyuck-Hoon;Shin, Hyo-Sub;Kim, Yoon-Hwan;Lee, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.159-166
    • /
    • 2019
  • Due to the various engagement situations, it is very difficult to generate the optimal trajectory with several constraints. This paper investigates the sequential convex programming for the impact angle control with the additional constraint of altitude limit. Recently, the SOCP(Second-Order Cone Programming), which is one area of the convex optimization, is widely used to solve variable optimal problems because it is robust to initial values, and resolves problems quickly and reliably. The trajectory optimization problem is reconstructed as convex optimization problem using appropriate linearization and discretization. Finally, simulation results are compared with analytic result and nonlinear optimization result for verification.

Sequential Convex Programming Based Performance Analysis of UAV Design (순차 컨벡스 프로그래밍 기반 무인기 설계 형상의 성능 분석)

  • Ko, Hyo-Sang;Choi, Hanlim;Jang, Jong-Youn;Kim, Joon;Ryu, Gu-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.771-781
    • /
    • 2022
  • Sequential convex programming based performance analysis of the designed UAV is performed. The nonlinear optimization problems generated by aerodynamics are approximated to socond order program by discretization and convexification. To improve the performance of the algorithm, the solution of the relaxed problem is used as the initial trajectory. Dive trajectory optimization problem is analyzed through iterative solution procedure of approximated problem. Finally, the maximum final velocity according to the performance of the actuator model was compared.

Energy-efficient Power Allocation based on worst-case performance optimization under channel uncertainties

  • Song, Xin;Dong, Li;Huang, Xue;Qin, Lei;Han, Xiuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4595-4610
    • /
    • 2020
  • In the practical communication environment, the accurate channel state information (CSI) is difficult to obtain, which will cause the mismatch of resource and degrade the system performance. In this paper, to account for the channel uncertainties, a robust power allocation scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network (HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of service (QoS) of users. We conduct the robust optimization model based on worse-case method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex non-liner optimization, we transform the optimization problem via Dinkelbach method and sequential convex programming, and the power allocation of small cell users (SCUs) is achieved by Lagrange dual approach. Finally, we analysis the convergence performance of proposed scheme. The simulation results demonstrate that the proposed algorithm can improve total EE of SCUs, and has a fast convergence performance.

Optimal Design of Helicopter Tailer Boom (헬리곱터 꼬리 날개의 최적 설계)

  • 한석영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.419-424
    • /
    • 1999
  • In this paper, the comparison of the first order approximation schemes such as SLP (sequential linear programming), CONLIN(convex linearization), MMA(method of moving asymptotes) and the second order approximation scheme, SQP(sequential quadratic programming) was accomplished for optimization of and nonlinear structures. It was found that MMA and SQP(sequential quadratic programming) was accomplished for optimization of and nonlinear structures. It was found that MMA and SQP are the most efficient methods for optimization. But the number of function call of SQP is much more than that of MMA. Therefore, when it is considered with the expense of computation, MMA is more efficient than SQP. In order to examine the efficiency of MMA for complex optimization problem, it was applied to the helicopter tail boom considering column buckling and local wall buckling constraints. It is concluded that MMA can be a very efficient approximation scheme from simple problems to complex problems.

  • PDF

The Development of Graphic User Interface Program for Optimum Design of RC Continuous Beam (RC 연속보의 최적설계를 위한 GUI 프로그램 개발)

  • 한상훈;조홍동;박중열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.245-250
    • /
    • 1999
  • In this study, the development of graphic user interface(GUI) program for optimum design of RC continuous beam is dealt. Optimum design problem that satisfies strength, serviceability, durability and geometrical conditions is formulated as a non-linear programming problem(NLP) in which the objective function as well as the constraints are highly non-linear on design variables such as cross sectional dimensions and steel ratio. Optimum design problem is solved by NLP techniques namely, sequential linear programming(SLP), sequential convex programming(SCP). Numerical examples of R.C. continuous beam using GUI system are given to show usefulness of GUI system for practical design work and efficiency of algorithm for the NLP techniques.

  • PDF

Collapse behaviour of three-dimensional brick-block systems using non-linear programming

  • Baggio, Carlo;Trovalusci, Patrizia
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.181-195
    • /
    • 2000
  • A two-step procedure for the application of non linear constrained programming to the limit analysis of rigid brick-block systems with no-tension and frictional interface is implemented and applied to various masonry structures. In the first step, a linear problem of programming, obtained by applying the upper bound theorem of limit analysis to systems of blocks interacting through no-tension and dilatant interfaces, is solved. The solution of this linear program is then employed as initial guess for a non linear and non convex problem of programming, obtained applying both the 'mechanism' and the 'equilibrium' approaches to the same block system with no-tension and frictional interfaces. The optimiser used is based on the sequential quadratic programming. The gradients of the constraints required are provided directly in symbolic form. In this way the program easily converges to the optimal solution even for systems with many degrees of freedom. Various numerical analyses showed that the procedure allows a reliable investigation of the ultimate behaviour of jointed structures, such as stone masonry structures, under statical load conditions.

Optimal Design of Frame Structure Considering Buckling Load (좌굴하중을 고려한 프레임 그조물의 최적 설계)

  • 진경욱
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • In this paper the comparison of the first order approximation schemes such as SLP(sequential linear programming) CONLIN(convex linearization) MMA(method of moving asymptotes) and the second order approximation scheme SQP(sequential quadratic programming) was accomplished for optimization of nonlinear structures. It was found that MMA and SQP are the most efficient methods for optimization. But the number of function call of SQP is much more than that of MMA. Therefore when it is considered with the expense of computation MMA is more efficient than SQP. In order to examine the efficiency of MMA for complex optimization problem it was applied to the helicopter tail boom con-sidering column buckling and local wall buckling constraints. it is concluded that MMA can be a very efficient approxima-tion scheme from simple problems to complex problems.

  • PDF

Energy-Efficiency Power Allocation for Cognitive Radio MIMO-OFDM Systems

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.686-689
    • /
    • 2014
  • This paper studies energy-efficiency (EE) power allocation for cognitive radio MIMO-OFDM systems. Our aim is to minimize energy efficiency, measured by "Joule per bit" metric, while maintaining the minimal rate requirement of a secondary user under a total power constraint and mutual interference power constraints. However, since the formulated EE problem in this paper is non-convex, it is difficult to solve directly in general. To make it solvable, firstly we transform the original problem into an equivalent convex optimization problem via fractional programming. Then, the equivalent convex optimization problem is solved by a sequential quadratic programming algorithm. Finally, a new iterative energy-efficiency power allocation algorithm is presented. Numerical results show that the proposed method can obtain better EE performance than the maximizing capacity algorithm.

Development of Optimum Design Program for Reinforced Concrete Continuous Beam Using Graphic User Interface System (GUI를 이용한 철근콘크리트 연속보의 최적설계프로그램 개발)

  • 조홍동;이상근;박중열;한상훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • In this paper, optimum design problem of R.C. continuous beam is considered and GUI system is developed for using at the practical design. Objective function lot formulation of optimum design problem is made up of the costs of concrete, reinforcing steel and formwork. Design variables are width, effective depth of the beam and steel ratio and design constraints are considered on the strength, serviceability, durability and geometrical conditions. The optimum design problem is solved by using sequential linear programming(SLP), sequential convex programming(SCP) and compared their effectiveness. Also this paper shows the application at practical design work according to the development of GUI system using visual basic.

  • PDF

Multiple Drones Collision Avoidance in Path Segment Using Speed Profile Optimization (다수 드론의 충돌 회피를 위한 경로점 구간 속도 프로파일 최적화)

  • Kim, Tae-Hyoung;Kang, Tae Young;Lee, Jin-Gyu;Kim, Jong-Han;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • In an environment where multiple drones are operated, collisions can occur when path points overlap, and collision avoidance in preparation for this is essential. When multiple drones perform multiple tasks, it is not appropriate to use a method to generate a collision-avoiding path in the path planning phase because the path of the drone is complex and there are too many collision prediction points. In this paper, we generate a path through a commonly used path generation algorithm and propose a collision avoidance method using speed profile optimization from that path segment. The safe distance between drones was considered at the expected point of collision between paths of drones, and it was designed to assign a speed profile to the path segment. The optimization problem was defined by setting the distance between drones as variables in the flight time equation. We constructed the constraints through linearize and convexification, and compared the computation time of SQP and convex optimization method in multiple drone operating environments. Finally, we confirmed whether the results of performing convex optimization in the 20 drone operating environments were suitable for the multiple drone operating system proposed in this study.