• 제목/요약/키워드: sequencing problem

검색결과 218건 처리시간 0.026초

퍼지선호관계 순서화 문제와 유전자 알고리즘 기반 해법 (A Sequencing Problem with Fuzzy Preference Relation and its Genetic Algorithm-based Solution)

  • 이건명;손봉기
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.69-74
    • /
    • 2004
  • A sequencing problem is to find an ordered sequence of some entities which maximizes (or minimize) the domain specific objective function. As some typical examples of sequencing problems, there are traveling salesman problem, job shop scheduling, flow shop scheduling, and so on. This paper introduces a new type of sequencing problems, named a sequencing problem with fuzzy preference relation, where a fuzzy preference relation is provided for the evaluation of the quality of sequences. It presents how such a problem can be formulated in terms of objective function. It also proposes a genetic algorithm applicable to such a sequencing problem.

A Sequencing Problem with Fuzzy Preference Relation

  • Lee, Kyung--Mi;Takeshi Yamakawa;Lee, Keon-Myung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.640-645
    • /
    • 1998
  • A Sequencing problem is one to find an ordered sequence of some entities which maximizes (or minimize) some objective function. This paper introduces an new type of sequencing problems, named a Sequencing problem with fuzzy preference relation is previded for the evaluation of the quality of sequences, It presents how such a problem can be formulated in the point of objective function. In addition, it proposes a genetic algorithm applicable to such a sequencing problem.

  • PDF

A Genetic Algorithm Approach to the Fire Sequencing Problem

  • Kwon, O-Jeong
    • 한국국방경영분석학회지
    • /
    • 제29권2호
    • /
    • pp.61-80
    • /
    • 2003
  • A fire sequencing problem is considered. Fire sequencing problem is a kind of scheduling problem that seeks to minimize the overall time span under a result of weapon­target allocation problem. The assigned weapons should impact a target simultaneously and a weapon cannot transfer the firing against another target before all planned rounds are consumed. The computational complexity of the fire sequencing problem is strongly NP­complete even if the number of weapons is two, so it is difficult to get the optimal solution in a reasonable time by the mathematical programming approach. Therefore, a genetic algorithm is adopted as a solution method, in which the representation of the solution, crossover and mutation strategies are applied on a specific condition. Computational results using randomly generated data are presented. We compared the solutions given by CPLEX and the genetic algorithm. Above $7(weapon){\times}15(target)$ size problems, CPLEX could not solve the problem even if we take enough time to solve the problem since the required memory size increases dramatically as the number of nodes expands. On the other hand, genetic algorithm approach solves all experimental problems very quickly and gives good solution quality.

다목적 유전 알고리듬을 이용한 혼합모델 조립라인의 최적 생산순서계획 (Mixed-Model Sequencing Using Genetic Algorithms with Multiple Evaluation Criteria)

  • 김연민;김영진
    • 산업공학
    • /
    • 제13권2호
    • /
    • pp.204-210
    • /
    • 2000
  • This paper deals with the problem of mixed-model sequencing on an assembly line. In this sequencing problem we want to minimize the risk of the conveyor stoppage and the total utility work. This paper applies genetic algorithm to solve the mixed-model sequencing problem which is formulated as an integer programming. The solution we get from this algorithm is compared with the solution of Tsai(1995)'s.

  • PDF

A Sequencing Problem in Mixed-Model Assembly Line Including a Painting Line

  • Yoo, J.K.;Moriyama, T.;Shimizu, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1118-1122
    • /
    • 2005
  • In order to keep production balance at a mixed-model assembly line and a painting line, large WIP(Work- In-Process) inventories are required between two lines. To increase the efficiency of line handling through reducing the inventories under this circumstance, this paper concerns with a sequencing problem for a mixed-model assembly line that includes a painting line where the uncertain elements regarding the defective products exist. Then, we formulate a new type of the sequencing problem minimizing the line stoppage time and the idle time with forecasting the supply time of the products from the painting line. Finally, we examine the effectiveness of the proposed sequencing through computer simulations.

  • PDF

준비시간이 있는 혼합모델 조립라인에서 투입순서문제를 위한 탐색적 방법 (Heuristic Method for Sequencing Problem in Mixed Model Assembly Lines with Setup Time)

  • 현철주
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2008년도 추계학술대회
    • /
    • pp.35-39
    • /
    • 2008
  • This paper considers the sequencing of products in mixed model assembly lines. The sequence which minimizes overall utility work in car assembly lines reduce the cycle time, the number of utility workers, and the risk of conveyor stopping. The sequencing problem is solved using Tabu Search. Tabu Search is a heuristic method which can provide a near optimal solution in real time. Various examples are presented and experimental results are reported to demonstrate the efficiency of the technique.

  • PDF

Maximum Options-Equiped Class First-Production Algorithm for Car Sequencing Problem

  • Lee, Sang-Un
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권9호
    • /
    • pp.105-111
    • /
    • 2015
  • This paper suggests O(n) linear-time algorithm for car sequencing problem (CSP) that has been classified as NP-complete because of the polynomial-time algorithm to solve the solution has been unknown yet. This algorithm applies maximum options-equiped car type first production rule to decide the car sequencing of n meet the r:s constraint. This paper verifies thirteen experimental data with the six data are infeasible. For thirteen experimental data, the proposed algorithm can be get the solution for in all cases. And to conclude, This algorithm shows that the CSP is not NP-complete but the P-problem. Also, this algorithm proposes the solving method to the known infeasible cases. Therefore, the proposed algorithm will stand car industrial area in good stead when it comes to finding a car sequencing plan.

혼합모델 조립라인에서 부품사용의 일정률 유지를 위한 생산순서 결정 : 유전알고리즘 적용 (Sequencing Problem to Keep a Constant Rate of Part Usage In Mixed Model Assembly Lines : A Genetic Algorithm Approach)

  • 현철주
    • 대한안전경영과학회지
    • /
    • 제9권4호
    • /
    • pp.129-136
    • /
    • 2007
  • This paper considers the sequencing of products in mixed model assembly lines under Just-In-Time (JIT) systems. Under JIT systems, the most important goal for the sequencing problem is to keep a constant rate of usage every part used by the systems. The sequencing problem is solved using Genetic Algorithm Genetic Algorithm is a heuristic method which can provide a near optimal solution in real time. The performance of proposed technique is compared with existing heuristic methods in terms of solution quality. Various examples are presented and experimental results are reported to demonstrate the efficiency of the technique.

가공 순서 결정과 기계 선택을 위한 모형 개발 (Model Development for Machining Process Sequencing and Machine Tool Selection)

  • 서윤호
    • 대한산업공학회지
    • /
    • 제21권3호
    • /
    • pp.329-343
    • /
    • 1995
  • Traditionally, machining process sequence was influenced and constrained by the design information obtained from CAD data base, i.e., class of operations, geometric shape, tooling, geometric tolerance, etc. However, even though all the constraints from design information are considered, there may exist more than one way to feasibly machine parts. This research is focused on the integrated problem of operations sequencing and machine tools selection in the presence of the product mix and their production volumes. With the transitional costs among machining operations, the operation sequencing problem can be formulated as a well-known Traveling Salesman Problem (TSP). The transitional cost between two operations is expressed as the sum of total machining time of the parts on a machine for the first operation and transportation time of the parts from the first machine to a machine for the second operation. Therefore, the operation sequencing problem formulated as TSP cannot be solved without transitional costs for all operation pairs. When solved separately or serially, their mutual optima cannot be guaranteed. Machining operations sequencing and machine tool selection problems are two core problems in process planning for discretely machined parts. In this paper, the interrelated two problems are integrated and analyzed, zero-one integer programming model for the integrated problem is formulated, and the solution methods are developed using a Tabu Search technique.

  • PDF

유전 알고리즘을 이용한 로봇 아크 용접작업 (Robot Arc Welding Task Sequencing using Genetic Algorithms)

  • 김동원;김경윤
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.49-60
    • /
    • 1999
  • This paper addresses a welding task sequencing for robot arc welding process planning. Although welding task sequencing is an essential step in the welding process planning, it has not been considered through a systematic approach, but it depends rather on empirical knowledge. Thus, an effective task sequencing for robot arc welding is required. Welding perations can be classified by the number of welding robots. Genetic algorithms are applied to tackle those welding task sequencing problems. A genetic algorithm for traveling salesman problem (TSP) is utilized to determine welding task sequencing for a MultiWeldline-SingleLayer problem. Further, welding task sequencing for multiWeldline-MultiLayer welding is investigated and appropriate genetic algorithms are introduced. A random key genetic algorithm is also proposed to solve multi-robot welding sequencing : MultiWeldline with multi robots. Finally, the genetic algorithm are implemented for the welding task sequencing of three dimensional weld plate assemblies. Robot welding operations conforming to the algorithms are simulated in graphic detail using a robot simulation software IGRIP.

  • PDF