The Transactions of the Korean Institute of Electrical Engineers D
/
v.52
no.9
/
pp.533-539
/
2003
Reinforcement learning (RL) has been widely used as a learning mechanism of an artificial life system. However, RL usually suffers from slow convergence to the optimum state-action sequence or a sequence of stimulus-response (SR) behaviors, and may not correctly work in non-Markov processes. In this paper, first, to cope with slow-convergence problem, if some state-action pairs are considered as disturbance for optimum sequence, then they no to be eliminated in long-term memory (LTM), where such disturbances are found by a shortest path-finding algorithm. This process is shown to let the system get an enhanced learning speed. Second, to partly solve a non-Markov problem, if a stimulus is frequently met in a searching-process, then the stimulus will be classified as a sequential percept for a non-Markov hidden state. And thus, a correct behavior for a non-Markov hidden state can be learned as in a Markov environment. To show the validity of our proposed learning technologies, several simulation result j will be illustrated.
As information on the internet and the data from smart devices are growing, the amount of stream data is also increasing in the real world. The stream data, which is a potentially large data, requires online learnable models and algorithms. In this paper, we propose a novel class of models: predictive convolutional neural networks to be able to perform online learning. These models are designed to deal with longer patterns as the layers become higher due to layering convolutional operations: detection and max-pooling on the time axis. As a preliminary check of the concept, we chose two-month gathered GPS data sequence as an observation sequence. On learning them with the proposed method, we compared the original sequence and the regenerated sequence from the abstract information of the models. The result shows that the models can encode long-range patterns, and can generate a raw observation sequence within a low error.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.517-519
/
2022
In 5G network environment, proactive mobility management is essential as 5G mobile networks provide new services with ultra-low latency through dense deployment of small cells. The importance of a system that actively controls device handover is emerging and it is essential to predict mobile trajectory during handover. Sequence-to-sequence model is a kind of deep learning model where it converts sequences from one domain to sequences in another domain, and mainly used in natural language processing. In this paper, we developed a system for predicting mobile trajectory in a wireless network environment using sequence-to-sequence model. Handover speed can be increased by utilize our sequence-to-sequence model in actual mobile network environment.
Journal of Korean Society of Industrial and Systems Engineering
/
v.36
no.4
/
pp.130-137
/
2013
In this paper, we consider a two-agent scheduling with sequence-dependent exponential learning effects consideration, where two agents A and B have to share a single machine for processing their jobs. The objective function for agent A is to minimize the total completion time of jobs for agent A subject to a given upper bound on the objective function of agent B, representing the makespan of jobs for agent B. By assuming that the learning ratios for all jobs are the same, we suggest an enumeration-based backward allocation scheduling for finding an optimal solution and exemplify it by using a small numerical example. This problem has various applications in production systems as well as in operations management.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.16
no.4
/
pp.351-357
/
2003
An easy learning elevator originated is opened to compare the existed teaming equipment, and it had a high studied efficiency that the sequence control circuit can open and close with the wire. The structure of equipment to be controlled from the first floor to the fifth floors is demostrated by the constructive apparatus with the lamps to express the function of the open-close of the door according to the cage moving with a mechanical actuation of the forward reverse breaker and the motor of load, and the mechanical actuation of hand-operation control components of push-button S/W and L/S and relay etc. These components let connect each other in order to control of the elevator function with the auto program and the designed sequence control circuit. Consequently the cage could go and come till 1∼5 steps with an auto program of the elevator and the sequence control circuit. The sequence control circuit is controlled by the step of forward and reverse to follow as that the sensor function of L/S1 ∼ L/S5 let posit with the control switchs of S/W1 ∼ S/W5 of PLC testing panel and switchs of S/W1 ∼ S/W5 installed on the transparent acryl plate of the frame. In here, improved apparatus is the hand-auto operation combined learning equipment to study the principle and technique of the originate sequence control circuit and the auto program of PLC.
IEIE Transactions on Smart Processing and Computing
/
v.3
no.5
/
pp.319-324
/
2014
Web applications make life more convenient. Many web applications have several kinds of user input (e.g. personal information, a user's comment of commercial goods, etc.) for the activities. On the other hand, there are a range of vulnerabilities in the input functions of Web applications. Malicious actions can be attempted using the free accessibility of many web applications. Attacks by the exploitation of these input vulnerabilities can be achieved by injecting malicious web code; it enables one to perform a variety of illegal actions, such as SQL Injection Attacks (SQLIAs) and Cross Site Scripting (XSS). These actions come down to theft, replacing personal information, or phishing. The existing solutions use a parser for the code, are limited to fixed and very small patterns, and are difficult to adapt to variations. A machine learning method can give leverage to cover a far broader range of malicious web code and is easy to adapt to variations and changes. Therefore, this paper suggests the adaptable classification of malicious web code by machine learning approaches for detecting the exploitation user inputs. The approach usually identifies the "looks-like malicious" code for real malicious code. More detailed classification using sequence information is also introduced. The precision for the "looks-like malicious code" is 99% and for the precise classification with sequence is 90%.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2002.11a
/
pp.596-602
/
2002
An easy elevator for learning originated is opened to compare the existed learning equipment, and it had a high studying efficient that the sequence control circuit can opens and closes with the wire. The structure of equipment to be controlled from the first floor to the fifth floors is demonstrated a constructive apparatus by a lamp atc to express the function of the open-close of the door according to the cage moving with a mechanical actuation of the forward-reverse breaker and the motor of load and a mechanical actuation of hand-operation control components of push-button S/W and L/S and relay etc. These components let connects each other in order to control of the elevator function with the auto program and the designed sequence control circuit. Consequent1y the process of these functions of 1~5steps could operates the cage with an auto program of the elevator and the sequence control circuit. The sequence control circuit is controlled by the step of forward and reverse to follow as that the sensor function of the L/S1~L/S5 let posit with the control switchs of S/W1~S/W5 of PLC testing panel and switchs of S/W1~S/W5 installed on the transparent acryl plate of the frame. In here, improved apparatus is a hand-auto operation combined learning equipment to study the principle and a technique of the originated sequence control circuit and the auto program of PLC.
This study aimed at studying the sequence of the Figure Transformation Learning, inquiring relationship among these transformations and then researching whether there is the difference of the learning ability or not between by teaching them as it is independent and by teaching them as it is contains. (Hypothesis 1) It may be more effective to teach The Sequence of Transformation Learning by beginning with peculiar field, ending with general field than vice versa At the result of verification-C $R_{M}$=2.59, 0.005
$R_{M}$=5.19, p<0.005-significant difference appeared. It is proved more effective to teach the Figure Transformation Learning the way it contains than the way it is independent. Synthesizing two hypothesises of the above, the conclusion is following The Figure Transformation Learning should be taught by beginning with peculiar field. ending with general field (congruent transformationlongrightarrowsimilar transformationlongrightarrowprojective transformationlongrightarrowtopological transformation). To teach it the way it contains is more effective.ive.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2002.07b
/
pp.1107-1112
/
2002
An easy elevator originated is an opened system to compare an existing equipment, and learning efficient is high as a wiring that the sequence control circuit is on and off. The structure of an equipment to be controled from the first floor to the fifth floor is constructed by a lamp to express the function of the open-close of the door according to the cage moving, to express the mechanical actuation of the forward-reverse break and motor of load and of hand-worked control component of Push-Button S/W, L/S and Relay. In order to act of the elevator function that these components connected, designed the auto program and the sequence control circuit. Consequently the process that these(1~5steps) operated the cage with an auto program of the elevator and the sequence control circuit is controled by the step of forward and reverse that the L/S1~L/S5 of sensor adjust function let posit, by the adjustable S/W1~S/W5 of PLC testing panel and the S/W1~S/W5 which installed on the transparent acryl plate of a frame. In here, improved apparatus is the learning equipment of combined use to study the principle and the technique of the originated sequence control circuit and the auto program of PLC.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.25
no.4
/
pp.296-311
/
2021
Topological Data Analysis (TDA), a relatively new field of data analysis, has proved very useful in a variety of applications. The main persistence tool from TDA is persistent homology in which data structure is examined at many scales. Representations of persistent homology include persistence barcodes and persistence diagrams, both of which are not straightforward to reconcile with traditional machine learning algorithms as they are sets of intervals or multisets. The problem of faithfully representing barcodes and persistent diagrams has been pursued along two main avenues: kernel methods and vectorizations. One vectorization is the Betti sequence, or Betti curve, derived from the persistence barcode. While the Betti sequence has been used in classification problems in various applications, to our knowledge, the stability of the sequence has never before been discussed. In this paper we show that the Betti sequence is unstable under the 1-Wasserstein metric with regards to small perturbations in the barcode from which it is calculated. In addition, we propose a novel stabilized version of the Betti sequence based on the Gaussian smoothing seen in the Stable Persistence Bag of Words for persistent homology. We then introduce the normalized cumulative Betti sequence and provide numerical examples that support the main statement of the paper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.