• Title/Summary/Keyword: sequence stratigraphic analysis

Search Result 20, Processing Time 0.021 seconds

Geochemical Study of the Jigunsan Shale: A Sequence Stratigraphic Application to Defining a Middle Ordovician Condensed Section, Taebacksan (Taebaeksan) Basin (직운산 세일층의 지화학적 연구: 태박산분지 오오도비스 중기 응축층 규명을 위한 시퀀스층서학적 적용)

  • Ryu, In-Chang;Ryu, Sun-Young;Son, Byeong-Kook
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.27-53
    • /
    • 2009
  • A 30-m-thick Middle Ordovician Jigunsan Shale exposed along the southern limb of the Backunsan (Baekunsan) Syncline, Taebacksan (Taebaeksan) basin, has been simply considered as a transgressive shale sequence onlapped the underlying Maggol platform carbonates. Results of this study, however, suggest that majority of the Jigunsan Shale be interpreted as a regressive shale sequence downlapped onto a thin (ca. 240 cm) marine stratigraphic unit consisting of organic-rich (>3 wt.% of TOC) black shales in the lower Jigunsan Shale, which was accumulated at the time of maximum regional transgression. Detailed stratigraphic analysis in conjunction with XRD, XRF, and ICP-MS as well as Rock-Eval pyrolysis allows the thin marine stratigraphic unit in the Jigunsan Shale to define a condensed section that was deposited in a distinctive euxinic zone formed due to expansion of pycnocline during the early highstand phase. As well, a number of stratigraphic horizons of distinctive character that may have sequence stratigraphic or environmental significance, such as transgressive surface, maximum flooding surface, maximum sediment starvation surface, and downlap surface, are identified in the lower Jigunsan Shale. In the future, these stratigraphic horizons will provide very useful information to make a coherent regional stratigraphic correlation of the Middle Ordovician strata and to develop a comprehensive understanding on stratigraphic response to tectonic evolution as well as basin history of the Taebacksan Basin.

Seismic Sequence Stratigraphy in the Southwestern Margin of the Ulleung Basin, East Sea (울릉분지 남서연변부의 탄성파 시퀀스 층서분석)

  • CHOI Dong-Lim
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.1-7
    • /
    • 1998
  • A multichannel seismic profile from the southwestern margin of the Ulleung Basin, East Sea, was analysed in detail to interpret the middle to late Miocene sequence stratigraphic evolution of the area. A regressive package is overlying a transgressive package which, in turn, is underlain by older uplifted and deformed sedimentary layers. A prominent condensed section separates the regressive and transgressive packages. The transgressive package is characterized by onlapping onto the underlying uplifted and deformed strata. The regressive package contains six prograding sequences composed of seismically resolvable lowstand, highstand, and transgressive systems tracts. Most of the depositional sequences comprise lowstand systems tracts consisting of basin-floor fan, slope fan, and prograding complex. Potential reservoirs in the regressive package are turbidite sands in basin-floor fans, channel-fill sands and overbank sand sheets in slope fans, and incised valley-fill sands in the shelf. The shallow marine sands in transgressive packages are another type of reservoir. Detailed sequence stratigraphic analysis, seismic data reprocessing, and 3-D seismic survey are suggested for the successful hydrocarbon exploration in the study area.

  • PDF

Sedimentary facies of the Cambrian Sesong Formation, Taebacksan Basin (태백산분지 캠브리아기 세송층의 퇴적상)

  • Joo, Hyun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.565-578
    • /
    • 2012
  • Sedimentary facies of the Middle to Upper Cambrian Sesong Formation, Taebacksan Basin, are analyzed using detailed field mapping and stratigraphic section measuring. As a result, five sedimentary facies are recognized in the formation, which include lime nodule bearing shale facies, anastomosing wackestone-packstone facies, well-laminated siltstone facies, fine to medium sandstone facies and lime pebble conglomerate facies. Together with sedimentary facies analysis, study on vertical facies variation indicates that the Sesong Formation was deposited in an outer to inner shelf during relative sea-level fall. Especially, shallow marine aspects of the upper part of the Sesong Formation including 10-m-thick, fine to medium-grained sandstones appear to be very similar with the shallow marine strata accumulated during the Steptoean Stage (Dunderbergia) in Laurentia. These lithofacies comparisons of coeval strata between two continents suggest that sedimentation in the Sesong Formation reflects the influence of global sea-level fall occurred during the late Middle Cambrian to early Late Cambrian. As well, a stratigraphic discontinuity surface that may have sequence stratigraphic significance is recognized within the shallow marine sandstone beds of the uppermost Sesong Formation. This stratigraphic discontinuity surface may correspond to the Sauk II-III sequence boundary in Laurentia. Therefore, results delineated in this study will use a new stratigraphic paradigm for regional correlation of the Middle to Late Cambrian strata (e.g., the Sesong Formation) in the Taebacksan Basin, and will provide very useful information on intercontinental stratigraphic correlation in the future.

Facies and sequence analysis on the Lower Ordovician Mungok Formation (전기 오오도비스기 문곡층의 시퀀스 및 상 분석)

  • Choi Yong Seok;Lee Yong Il
    • The Korean Journal of Petroleum Geology
    • /
    • v.9 no.1_2 s.10
    • /
    • pp.1-15
    • /
    • 2001
  • Hierarchically controlled sequence stratigraphic analysis shows that the Lower Ordovician mixed carbonatesiliciclastic Mungok Formation, Korea consists of three depositional sequences: T1, T2, and T3 in ascending order. Sequence boundaries are generally marked by abrupt transition from coarse-grained shallow-water carbonates to finegrained deeper-water carbonates mixed with fine-grained siliciclastics, and show indication of subaerial exposure such as karstification. Within this sequence stratigraphic framework, facies characteristics indicate that the Mungok sequences were mostly deposited on a subtidal ramp without slope break. The Mungok ramp had been under the influence of frequent tropical storm activity during deposition. The difference in lithology of tempestites seems to have been controlled by the nature of substrates and by proximality. High-frequency cycles consist of upward-shallowing facies successions. Cycles of shallow-water and basinal deposits are not well represented, probably due to cycle amalgamation. Cycle stacking patterns do not show a consistent thickness change that is usually associated with a large-scale sea-level change probably because of unfilled accommodation space.

  • PDF

Space-time-dissociated differential sedimentation and its relationship with the rate of relative sea-level change: the Lower Ordovician Mungok Formation, Korea

  • Choi Yong Seok;Lee Yong Il
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.14-30
    • /
    • 2000
  • Hierarchically controlled sequence stratigraphic analysis shows that the Lower Ordovician mixed carbonate-siliciclastic Mungok Formation, Korea consists of three depositional sequences: T1, T2, and T3. Sequence boundaries are generally marked by abrupt transition from coarse-grained shallow-water carbonates to fine-grained deeper-water carbonates mixed with fine-grained siliciclastics, and show indication of subaerial exposure such as karstification. Within this sequence stratigraphic framework, facies characteristics indicate that the Mungok sequences were mostly deposited in subtidal ramp environments. High-frequency cycles consist of upward-shallowing facies successions. Cycles of shallow-water and basinal deposits are not represented well, probably due to cycle amalgamation. Cycle stacking patterns do not show a consistent thickness change that reflects a large-scale sea-level change due to unfilled accommodation space. The Mungok sequences show that many factors including relative sea-level change and topography are involved in controlling sequence development on carbonate ramps. The depositional setting evolved from the high-energy ramps in the sequences T1 and T2 into the low-energy ramp in the sequence T3. Topography is interpreted to have been responsible for the different energy regimes of the carbonate ramps in the Mungok sequences. The high ramp gradient in the sequences T1 and T2 seems to be caused by space-time-dissociated differential sedimentation resulting in spatially narrow distribution of sediment filling, which in turn may be related to high rate of relative sea-level change. In contrast, low ramp gradient was maintained in the sequence T3 during slow changes of relative sea level resulting in broad distribution of sediment filling.

  • PDF

Muti-variable Sequence Stratigraphic Model and its Application to Shelf-Slope System of the Southwestern Ulleung Basin Margin (다중변수 순차층서 모델 개발을 통한 울릉분지 남서부 대륙주변부의 층서연구)

  • Yoon Seok Hoon;Park Se Jin;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.36-47
    • /
    • 1997
  • This study presents multi-variable sequence model for a broader application of sequence concept proposed by Exxon group. The concept of the multi-variable model is based on the fact that internal organization and boundary type of the sequences are determined by three varying factors including 3rd-order cycles of eustasy, and tectonic movement and sediment influx with 2nd-order changes. Instead of Exxon group's systems tracts, this model adopts parasequence sets as the fundamental building blocks of the sequence, because they are descriptive stratigraphic units simply defined by internal stacking pattern, reflecting interactions of accommodation and sediment influx. Seven sequence types which vary in number and type of internal parasequence sets are formulated as associations of four types of accommodation development and three grades of sediment influx. In the southwestern margin of Ulleung Basin, the multi-variable sequence analysis of shelf-slope sequence shows systematic changes in stratal patterns and the numbs, of constituent parasequence sets (i.e. sequence type). These changes are interpreted to reflect temporal and spatial changes in type and rate of tectonic movement and sediment influx, as a result of back-arc opening and closing. During the back-arc opening, rapid subsidence, continuous rise of relative sea level, and high sediment influx gave rise to sequences dominantly of single progradational parasequence set. In the early stage of back-arc closing accompanied by local contractional deformation, different types of sequences contemporaneously formed depending on the spatial changes in tectonically-controlled accommodation and influx rates. During the subsequent slow back-arc subsidence, rise-dominated relative sea-level cycle was coupled with moderate to high sedimentation rate to have resulted in sequences consisting of $2~3$ parasequence sets.

  • PDF

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF

Application of Numerical Methods in the Zonation and Correlation of Four Late Quaternary Pollen Data from lows (수치분석의 도식화를 통한 제사기 화분자료의 분대 및 대비)

  • Hyung Keun Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.3 no.1
    • /
    • pp.55-68
    • /
    • 1989
  • This paper presents examples of the computer-aided zonation and correlation of pollen data from the Late-glacial to Holocene stratigraphic sequences at four sites in central Iowa, U.S.A. Spearman's rank correlation coefficient matrix and first four components of Principal components analysis plotted in a stratigraphic order are combined to provide an excellent zonation of the pollen data at each site. Correlation of the four pollen sequences are conducted by Principal components analysis of the data sets combined in one. The first and second principal components successfully provide correlation lines that match fairly closely the zone boundaries of each pollen sequence. The third and fourth components, in contrast, are greatly different from site to site, representing the unique pollen assemblages at each site.

  • PDF

Stratigraphy of the BP-1 well from Sora Sub-basin (소라소분지 BP-1공의 층서연구)

  • Oh, Jaeho;Kim, Yongmi;Yun, Hyesu;Park, Eunju;Yi, Songsuk;Lee, Minwoo
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.551-564
    • /
    • 2012
  • This study carried out palynological analysis and seismic interpretation to establish a stratigraphic and environmental reconstruction mainly based on fossil palynomorphs and seismic reflection data correlated with the oil exploation well (BP-1) located in the Sora Sub-basin. There were frequent environmental and floral changes due to sea level change in the Sora Sub-basin. The palynomorph assemblages found in the well sediments enabled paleoecological zonation of the well sediment sequence resulting in 4 zones: Ecozone III, Ecozone IV, Ecozone V, Ecozone VI. Index fossils among palynomorphs indicate geological ages of the units within the well ranging from Eocene to Pleistocene, and paleoenvironment varies from freshwater to inner neritic marine. Previous studies suggest that the marine deposits were slightly different in stratigraphic range from well to well. It is considered the difference is credited to geomorphological setting. This study also shows stratigraphic correlation between existing wells and BP-1 well to establishes a standard stratigraphy of the Domi Basin.

Seismic Stratigraphy of the post-Paleozoic Sedimentary Section in the Main Pass area, Northern Gulf of Mexico (멕시코만 Main Pass 해역의 중생대-신생대 퇴적층의 탄성파층서)

  • Suh Mancheol;Pilger Rex H.;Nummedal Dag
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.1-11
    • /
    • 1996
  • Multichannel deep seismic reflection data in the Main Pass area of the northern Gulf of Mexico are interpreted in this study for the stratigraphy and the depositional history. Structural analysis of deep seismic reflection data provides new information on the locations of paleo-shelf margins and the basement. The basement occurs at about $7.5{\cal}km$ depth at the northern end of seismic line LSU-1 in the Mississippi shelf. The Jurassic and early Cretaceous shelf margins occupy approximately the same position, whereas the Oligocene shelf margin occurs about 28 km farther landward. Ten major seismic stratigraphic sequences are identified for the Mesozoic and Cenozoic sed-imentary section. Correlation of sequence boundaries defined in this study with those in other areas of the circum-Gulf region indicates that majo. regional unconformities formed at the mid-Miocene (10.5 Ma), mid-Oligocene (30 Ma), mid-Cretaceous (97 Ma), and top-Jurassic (131 Ma). Three distinct periods a.e recognized in the depositional history of the Main Pass area of the northern Gulf of Mexico: (1) shallow ma.me deposition du.ins the period from the opening of the Gulf to the mid-Cretaceous, (2) deep marine deposition in the Cretaceous to the mid-Oligocene, and (3) shallow marine deposition prevailed since the mid-Oligocene to present. A comparison of depositional rates between the Main Pass area and the Destin Dome area indicates that the northern Gulf of Mexico continental margin was initiated as a terrigenous sediment wedge province in the late Cretaceous.

  • PDF