DOI QR코드

DOI QR Code

Sedimentary facies of the Cambrian Sesong Formation, Taebacksan Basin

태백산분지 캠브리아기 세송층의 퇴적상

  • Joo, Hyun (Exploration Department, SK Innovation) ;
  • Ryu, In-Chang (Department of Geology, Kyungpook National University)
  • 주현 (SK이노베이션 탐사실) ;
  • 유인창 (경북대학교 지질학과)
  • Received : 2012.09.21
  • Accepted : 2012.10.20
  • Published : 2012.10.28

Abstract

Sedimentary facies of the Middle to Upper Cambrian Sesong Formation, Taebacksan Basin, are analyzed using detailed field mapping and stratigraphic section measuring. As a result, five sedimentary facies are recognized in the formation, which include lime nodule bearing shale facies, anastomosing wackestone-packstone facies, well-laminated siltstone facies, fine to medium sandstone facies and lime pebble conglomerate facies. Together with sedimentary facies analysis, study on vertical facies variation indicates that the Sesong Formation was deposited in an outer to inner shelf during relative sea-level fall. Especially, shallow marine aspects of the upper part of the Sesong Formation including 10-m-thick, fine to medium-grained sandstones appear to be very similar with the shallow marine strata accumulated during the Steptoean Stage (Dunderbergia) in Laurentia. These lithofacies comparisons of coeval strata between two continents suggest that sedimentation in the Sesong Formation reflects the influence of global sea-level fall occurred during the late Middle Cambrian to early Late Cambrian. As well, a stratigraphic discontinuity surface that may have sequence stratigraphic significance is recognized within the shallow marine sandstone beds of the uppermost Sesong Formation. This stratigraphic discontinuity surface may correspond to the Sauk II-III sequence boundary in Laurentia. Therefore, results delineated in this study will use a new stratigraphic paradigm for regional correlation of the Middle to Late Cambrian strata (e.g., the Sesong Formation) in the Taebacksan Basin, and will provide very useful information on intercontinental stratigraphic correlation in the future.

태백산분지 캠브리아기 세송층의 퇴적상이 정밀 주상도 작업과 야외조사에 의해 분석되었다. 결과로 5개의 퇴적상이 세송층 내에서 인지되었으며 이들은 석회질 단괴를 포함한 셰일상, 망상형 와케스톤-팩스톤상, 엽리질 실트암상, 세립 및 중립질 사암상, 석회 잔자갈 역암상 등을 포함한다. 퇴적상 분석과 함께 수행된 수직적 상변화에 대한 연구는 세송층이 외대륙붕 및 내대륙붕 환경 하에서 상대적인 해수면의 하강에 의해 퇴적되었음을 지시한다. 특히, 세송층 최상부에 10 m 두께의 세립 및 중립질 사암층의 천해성 퇴적양상은 동 시기인 로렌시아 대륙의 Steptoean Stage(Dunderburgia) 퇴적층 내에서 나타나는 퇴적상 변화와 매우 유사한 양상을 보인다. 이러한 두 대륙 사이의 동 시기 퇴적층의 퇴적상에 관한 비교는 세송층의 퇴적이 캠브리아기 중기 후반에서 캠브리아기 후기 초반 동안에 있었던 전 지구적인 해수면의 하강의 영향을 잘 반영하고 있음을 암시한다. 또한 세송층 상부구간의 세립 및 중립질 천해성 사암층 내에는 시퀀스 층서학적으로 의미가 있는 하나의 층서불연속면이 인지된다. 이러한 층서불연속면은 로렌시아 대륙에서 정의되었던 Sauk II-III 시퀀스 경계면에 대비될 수도 있다. 따라서 본 연구에서 도출된 결과는 태백산분지 내 캠브리아기 중기 및 후기 퇴적층(예; 세송층)들의 지역 간 대비에 있어서 새로운 층서적 사고의 틀로 사용될 수 있으며, 향후 대륙 간 층서대비에 있어 매우 유용한 정보를 제공해 줄 수 있다.

Keywords

References

  1. Aigner, T. (1985) Storm depositional systems, dynamic stratigraphy in modern and ancient shallow-marine sequence. In: Friedman, G.M., Neugebauer, H.J. and Seilacher, A. (eds.), Lecture Notes in Earth Science. Springer-Verlag, New York, 174p.
  2. Alvaro, J.J. and Vennin, E. (1997) Episodic development of Cambrian eocrinoid-sponge meadows in the Iberian Chains (NE Spain): Facies, v.37, p.49-64. https://doi.org/10.1007/BF02537370
  3. Chen, J., Chough, S.K., Han, Z. and Lee, J.H. (2011) An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations (late Middle Cambrian to Furongian), Shandong Province, China: Sequence-stratigraphic implications. Sedimentary Geology, v.233, p.129-149. https://doi.org/10.1016/j.sedgeo.2010.11.002
  4. Cheong, C.H. (1969) Stratigraphy and paleontology of the Samcheog coalfield, Gangweondo, Korea. Journal of the Geological Society of Korea, v.5, p.13-56.
  5. Choi, D.K. (2007) Trilobite research in South Korea during the 20th Century. Bulletin of the New York State Museum, v.407, p.81-96.
  6. Choi, D.K. and Chough, S.K. (2005) The Cambrian- Ordovician stratigraphy of the Taebaeksan Basin, Korea: a review. Geosciences Journal, v.9, p.187-214. https://doi.org/10.1007/BF02910579
  7. Choi, D.K., Chough, S.K., Kwon, Y.K., Lee, S.B., Woo, J., Kang, I., Lee, H.S., Lee, S.M., Sohn, J.W., Shinn, Y.J. and Lee, D.J. (2004) Taebaek group (Cambrian- Ordovician) in the Seokgaejae section, Taebaeksan Basin: a refined lower Paleozoic stratigraphy in Korea. Geosciences Journal, v.8, p.125-151. https://doi.org/10.1007/BF02910190
  8. de Wet, C.B., Moshier, S.O., Hower, J.C. and Rimmer, J.C. (1991) Deposition and diagenesis of marine-swamp margin: the Providence Limestone and adjacent coals, western Kentuky. In: Lomando, A. and Harris, P. (eds.), Mixed Carbonate-Siliciclastic Sequences, Soc. Econ. Paleontol. Min. Core Workshop, No. 15, p.169-203.
  9. Flügel, E. (2004) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin, 976p.
  10. Geological Investigation Corps of the Taebaegsan Region (GICTR) (1962) Report on the Geology and mineral Resources of the Taebaegsan Region. Geological Society of Korea, Seoul.
  11. Glumac, B. and Spivak-Birndorf, M.L. (2002) Stable isotopes of carbon as an invaluable stratigraphic tool: An example from the Cambrian of the northern Appalachians, U.S.A. Geology, v.30, p.563-566. https://doi.org/10.1130/0091-7613(2002)030<0563:SIOCAA>2.0.CO;2
  12. Glumac, B. and Walker, K.R. (1998) A Late Cambrian positive carbon- isotope excursion in the southern Appalachians: Relation to biostratigraphy, sequence stratigraphy, environments of deposition, and diagenesis. Journal of Sedimentary Research, v.68, p.1212-1222. https://doi.org/10.2110/jsr.68.1212
  13. Im, J.N, Cheong, G.S, Park, T.Y and Lee, K.S. (2010) Study on SPICE in the Cambrian Sesong Formation, Taebacksan region, Kwangweondo. Abstract Volume of 2010 Annual Conference of Korean Earth Science Society, p.20.
  14. Kobayashi, T. (1930) Cambrian and Ordovician faunas of South Korea and the Bearing of the Tsinling-Keijo Line in Ordovician palaeogeography. Proceedings of the Imperial Academy, v.4, p.423-426.
  15. Kwon, Y.K. and Chough, S.K. (2005) Sequence stratigraphy of the cyclic successions in the Dumugol Formation (Lower Ordovician), mideast Korea. Geosciences Journal, v.9, p.305-324. https://doi.org/10.1007/BF02910319
  16. Kwon, Y.K., Chough, S.K., Choi, D.K. and Lee, D.J. (2002) Origin of limestone conglomerates in the Choson Supergroup (Cambro -Ordovician), mid-east Korea. Sedimentary Geology, v.146, p.265-283. https://doi.org/10.1016/S0037-0738(01)00128-2
  17. Kwon, Y.K., Chough, S.K., Choi, D.K. and Lee, D.J. (2006) Sequence stratigraphy of the Taebaek Group (Cambrian-Ordovician), mideast Korea. Sedimentary Geology, v.192, p.19-55. https://doi.org/10.1016/j.sedgeo.2006.03.024
  18. Lee, Y.I. and Kim, J.C. (1992) Storm-influenced siliciclastic and carbonate ramp deposits, the Lower Ordovician Dumugol Formation, South Korea. Sedimentology, v.39, p.951-969. https://doi.org/10.1111/j.1365-3091.1992.tb01990.x
  19. Lee, Y.I. and Lee J.I. (2003) Paleozoic sedimentation and tectonics in Korea: A review. Island Arc, v.12, p.162-179. https://doi.org/10.1046/j.1440-1738.2003.00388.x
  20. Loreau, J.P. and Purser, B.H. (1973) Distribution and ultrastructure of Holocene ooids in the Persian Gulf. In: Purser, B.H. (eds.), The Persian Gulf. Springer- Verlag, Berlin, p.279-328.
  21. Markello, J.R. and Read, J.F. (1981) Carbonate ramp-todeeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, Southwest Virginia Appalachians. Sedimentology, v.28, p.573-597. https://doi.org/10.1111/j.1365-3091.1981.tb01702.x
  22. McKee, E.D. and Weir, G.W. (1953) Terminology for stratification and cross-stratification in sedimentary rocks. Geological Society of America Bulletin, v.64, p.381-390. https://doi.org/10.1130/0016-7606(1953)64[381:TFSACI]2.0.CO;2
  23. Meyerhoff, A.A., Kamen-Kaye, M., Chen, C. and Taner, I. (1991) China- Stratigraphy, Paleogeography, and Tectonics. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  24. Moller, N.K. and Kvingan, K. (1988) The genesis of nodular limestones in the Ordovician and Silurian of the Oslo Region (Norway). Sedimentology, v.35, p.405-420. https://doi.org/10.1111/j.1365-3091.1988.tb00994.x
  25. Nakazawa, T., Ueno, K., Kawahata, H., Fujikawa, M. and Kashiwagi, K. (2009) Facies stacking patterns in highfrequency sequences influenced by long-term sealevel change on a Permian Panthalassan oceanic atoll: an example from the Akiyoshi Limestone, SW Japan. Sedimentary Geology, v.214, p.35-48. https://doi.org/10.1016/j.sedgeo.2008.12.003
  26. Okada, K. (1971) Classification of sandstone: Analysis and proposal. Journal of Geology, v.79, p.509-525. https://doi.org/10.1086/627673
  27. Osleger, D.A. and Read, J.F. (1993) Comparative analysis of methods used to define eustatic variations in outcrop: Late Cambrian interbasinal sequence development: American Journal of Science, v.293, p.157-216. https://doi.org/10.2475/ajs.293.3.157
  28. Palmer, A.R. (1981) Subdivision of the Sauk sequence. In: Taylor, M.E. (eds.), Short Papers for the Second International Symposium on the Cambrian System. U.S. Geological Survey, Open-File Report 81-743, p.160-162.
  29. Park, B.K. (1985) Genesis of the rhythmite of Upper Cambrian Hwajeol Formation, Joseon Supergroup, Korea. Journal of the Geological Society of Korea, v.21, p.184-195.
  30. Park, B.K. and Han, S.J. (1985) Origin of carbonate flat pebble conglomerate of the Upper Cambrian Hwajeol Formation, Choseon Supergroup, Korea. Journal of Korean Institutes of Mining Geology, v.18, p.177-184.
  31. Park, T.Y and Choi, D.K. (2011) Trilobite faunal successions across the base of the Furongian Series in the Taebaek Group, Korea. Geobios, v.44, p.481-498. https://doi.org/10.1016/j.geobios.2011.02.003
  32. Peng, S., Babcock, L.E. and Zhu, M. (2001) Cambrian System of South China, Palaeoworld No. 13, Hefei, University of Science and Technology of China, 310p.
  33. Rees, E.I., Eagle, R.A. and Walker, A.J.M. (1976) Trophic and Other Influences on Macrobenthos Population Fluctuations in Liverpool Bay. In: Persoone, G. and Jaspers, E. (eds.), Proceedings of the 10th European symposium on marine biology 2. Universa Press, Wetteren, Belgium, p.589-599.
  34. Saltzman, M.R., Brasier, M.D., Ripperdan, R.L., Ergaliev, G.K., Lohmann, K.C., Robison, R.A., Chang, W.T., Peng, S. and Runnegar, B. (2000) A global carbon isotope excursion during the Late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeography, Palaeoceanography, Palaeoclimatology, v.162, p.211-223. https://doi.org/10.1016/S0031-0182(00)00128-0
  35. Saltzman, M.R., Cowan, C.A., Runkel, A.C., Runnegar, B., Stewart, M.C. and Palmer, A.R. (2004) The late Cambrinan SPICE (${\delta}$13C) event and SAUKIISAUKIII regression: New evidence from laurentian basins in Utah, Iowa, and Newfoundland. Journal of Sedimentary Research, v.74, p.366-377. https://doi.org/10.1306/120203740366
  36. Saltzman, M.R., Runnegar, B. and Lohmann, K.C. (1998) Carbon-isotope stratigraphy of the Pterocephaliid Biomere in the eastern Great Basin: Record of a global oceanographic event during the Late Cambrian. Geological Society of America Bulletin, v.110, p.285-297. https://doi.org/10.1130/0016-7606(1998)110<0285:CISOUC>2.3.CO;2
  37. Sam, B. (1995) Principles of Sedimentology and Stratigraphy, 5th ed., Prentice Hall, p.101-114.
  38. Sloss, L.L. (1963) Sequences in the cratonic interior of North America. Geological Society of America Bulletin, v.74, p.93-114. https://doi.org/10.1130/0016-7606(1963)74[93:SITCIO]2.0.CO;2
  39. Stanistreet, I.G. and Hughes, M.J. (1984) Pseudoconglomerate and reexamination of some paleoenvironmental controversies. Geology, v.12, p.717-719. https://doi.org/10.1130/0091-7613(1984)12<717:PAAROS>2.0.CO;2
  40. Torok, A. (1998) Controls on development of Mid-Triassic ramps: example from Hungary. In: Wright, V.P. and Burchette, T.P. (eds.), Carbonate Ramps. Geological Society Special Publications, Geological Society of London, v.149, p.339-367.
  41. Vail, P.R., Mitchum Jr., R.M. and Thompson, S. (1977) Seismic stratigraphy and global changes of sea level. In: Payton, C.E. (eds.), Seismic Stratigraphy-Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, v.26, p.83-97.
  42. Veevers, J.J. (2004) Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185- 100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews, v.68, p.1-132. https://doi.org/10.1016/j.earscirev.2004.05.002
  43. Woo, K.S. (1999) Cyclic tidal successions of the Middle Ordovician Maggol Formation in the Taebaeg area, Kangwondo, Korea. Geoscience Journal, v.3, p.123-140. https://doi.org/10.1007/BF02910269
  44. Woo, K.S. and Park, B.K. (1989) Depositional environments and diagenesis of the sedimentary rocks, Choseon Supergroup, Korea: past, present, and future; the state of the art. Journal of the Geological Society of Korea, v.25, p.347-363.

Cited by

  1. Mineralogical Characteristics of the Lower Choseon Supergroup in the Weondong Area vol.49, pp.5, 2016, https://doi.org/10.9719/EEG.2016.49.5.349