• Title/Summary/Keyword: seq2seq

Search Result 226, Processing Time 0.028 seconds

Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells

  • Jung Ho Lee;Brian H Lee;Soyoung Jeong;Christine Suh-Yun Joh;Hyo Jeong Nam;Hyun Seung Choi;Henry Sserwadda;Ji Won Oh;Chung-Gyu Park;Seon-Pil Jin;Hyun Je Kim
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.18.1-18.11
    • /
    • 2023
  • Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.

An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking (실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구)

  • Hee-ju Chae;Kyeong-heon Kwak;Da-yeon Lee;Eunkyung Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • In this detailed and comprehensive study, our primary focus has been placed on accurately gauging the number of visitors and their real-time locations in commercial spaces. Particularly, in a real cafe, using security cameras, we have developed a system that can offer live updates on available seating and predict future congestion levels. By employing YOLO, a real-time object detection and tracking algorithm, the number of visitors and their respective locations in real-time are also monitored. This information is then used to update a cafe's indoor map, thereby enabling users to easily identify available seating. Moreover, we developed a model that predicts the congestion of a cafe in real time. The sophisticated model, designed to learn visitor count and movement patterns over diverse time intervals, is based on Long Short Term Memory (LSTM) to address the vanishing gradient problem and Sequence-to-Sequence (Seq2Seq) for processing data with temporal relationships. This innovative system has the potential to significantly improve cafe management efficiency and customer satisfaction by delivering reliable predictions of cafe congestion to all users. Our groundbreaking research not only demonstrates the effectiveness and utility of indoor location tracking technology implemented through security cameras but also proposes potential applications in other commercial spaces.

The role of RNA epigenetic modification-related genes in the immune response of cattle to mastitis induced by Staphylococcus aureus

  • Yue Xing;Yongjie Tang;Quanzhen Chen;Siqian Chen;Wenlong Li;Siyuan Mi;Ying Yu
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1141-1155
    • /
    • 2024
  • Objective: RNA epigenetic modifications play an important role in regulating immune response of mammals. Bovine mastitis induced by Staphylococcus aureus (S. aureus) is a threat to the health of dairy cattle. There are numerous RNA modifications, and how these modification-associated enzymes systematically coordinate their immunomodulatory effects during bovine mastitis is not well reported. Therefore, the role of common RNA modification-related genes (RMRGs) in bovine S. aureus mastitis was investigated in this study. Methods: In total, 80 RMRGs were selected for this study. Four public RNA-seq data sets about bovine S. aureus mastitis were collected and one additional RNA-seq data set was generated by this study. Firstly, quantitative trait locus (QTL) database, transcriptome-wide association studies (TWAS) database and differential expression analyses were employed to characterize the potential functions of selected enzyme genes in bovine S. aureus mastitis. Correlation analysis and weighted gene co-expression network analysis (WGCNA) were used to further investigate the relationships of RMRGs from different types at the mRNA expression level. Interference experiments targeting the m6 A demethylase FTO and utilizing public MeRIP-seq dataset from bovine Mac-T cells were used to investigate the potential interaction mechanisms among various RNA modifications. Results: Bovine QTL and TWAS database in cattle revealed associations between RMRGs and immune-related complex traits. S. aureus challenged and control groups were effectively distinguished by principal component analysis based on the expression of selected RMRGs. WGCNA and correlation analysis identified modules grouping different RMRGs, with highly correlated mRNA expression. The m6 A modification gene FTO showed significant effects on the expression of m6 A and other RMRGs (such as NSUN2, CPSF2, and METTLE), indicating complex co-expression relationships among different RNA modifications in the regulation of bovine S. aureus mastitis. Conclusion: RNA epigenetic modification genes play important immunoregulatory roles in bovine S. aureus mastitis, and there are extensive interactions of mRNA expression among different RMRGs. It is necessary to investigate the interactions between RNA modification genes regulating complex traits in the future.

Illumina MiSeq sequencing reveals the effects of grape seed procyanidin on rumen archaeal communities in vitro

  • Zhang, Hua;Tong, Jinjin;Wang, Zun;Xiong, Benhai;Jiang, Linshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.61-68
    • /
    • 2020
  • Objective: The present study explored the effects of grape seed procyanidin extract (GSPE) on rumen fermentation, methane production and archaeal communities in vitro. Methods: A completely randomized experiment was conducted with in vitro incubation in a control group (CON, no GSPE addition; n = 9) and the treatment group (GSPE, 1 mg/bottle GSPE, 2 g/kg dry matter; n = 9). The methane and volatile fatty acid concentrations were determined using gas chromatography. To explore methane inhibition after fermentation and the response of the ruminal microbiota to GSPE, archaeal 16S rRNA genes were sequenced by MiSeq high-throughput sequencing. Results: The results showed that supplementation with GSPE could significantly inhibit gas production and methane production. In addition, GSPE treatment significantly increased the proportion of propionate, while the acetate/propionate ratio was significantly decreased. At the genus level, the relative abundance of Methanomassiliicoccus was significantly increased, while the relative abundance of Methanobrevibacter decreased significantly in the GSPE group. Conclusion: In conclusion, GSPE is a plant extract that can reduce methane production by affecting the structures of archaeal communities, which was achieved by a substitution of Methanobrevibacter with Methanomassiliicoccus.

Kinetic Analysis of the Hepatic Uptake and Biliary Excretion of 1-Anilino-8-Naphthalene Sulfonate (ANS) in Vivo (In Vivo 레벨에서 1-아닐리노-8-나프탈렌 설포네이트(ANS)의 간내 이행 및 담즙배설 과정의 속도론적 해석)

  • Bae, Woong-Tak;Chung, Youn-Bok;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.209-216
    • /
    • 2001
  • The purpose of the present study was to investigate the hepatic uptake and biliary excretion of l-anilino-8-naphthalene sulfonate (ANS) in vivo. The plasma concentration and liver concentration of ANS were determined after its i.v. bolus administration at a dose of $30\;{\mu}mol/kg$ in rats. The hepatic uptake clearance $(CL_{uptake})$ of ANS was 0.1 ml/min/g liver. On the basis of the unbound concentration of ANS, the permeability-surface area product $(PS_{influx})$ was calculated to be l0.4 ml/min/g liver, being comparable of in vitro data. On the other hand, we determined the plasma concentration, liver concentration and biliary excretion rate of ANS at steady-state after its i. v. infusion $(0.2-1.6\;{\mu}mol/min/kg)$ in rats. The excretion clearance $(CL_{excretion})$ of ANS showed Michaelis-Menten kinetics with increasing the infusion rate. The permeability-surface area product $(PS_{excretion})$ based on the unbound concentration in the liver was calculated to be 0.0165 ml/min/g liver, which is negligible compared with the intrinsic clearance $(CL_{int}=3.3\;ml/min/g\;liver)$ by rat liver microsomes. The sequestration process of ANS, therefore, was considered to be mainly due to the metabolic process in the liver $(PS_{seq}{\risingdotseq}CL_{int})$. Furthermore, $PS_{efflux}$ value calculated from $PS_{influx}$ and $PS_{seq}$ was 4.4 ml/min/g liver, which was comparable of in vitro data. In conclusion, in vivo parameters such as $PS_{influx}$, $PS_{efflux}$ and $PS_{seq}$ in the present study showed good in vivo-in vitro relationship. Thus, the kinetic analysis method proposed in the present study would be useful to analyze the hepatic transport of drugs in vivo.

  • PDF

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

LPS-Induced Modifications in Macrophage Transcript and Secretion Profiles Are Linked to Muscle Wasting and Glucose Intolerance

  • Heeyeon Ryu;Hyeon Hak Jeong;Seungjun Lee;Min-Kyeong Lee;Myeong-Jin Kim;Bonggi Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.270-279
    • /
    • 2024
  • Macrophages are versatile immune cells that play crucial roles in tissue repair, immune defense, and the regulation of immune responses. In the context of skeletal muscle, they are vital for maintaining muscle homeostasis but macrophage-induced chronic inflammation can lead to muscle dysfunction, resulting in skeletal muscle atrophy characterized by reduced muscle mass and impaired insulin regulation and glucose uptake. Although the involvement of macrophage-secreted factors in inflammation-induced muscle atrophy is well-established, the precise intracellular signaling pathways and secretion factors affecting skeletal muscle homeostasis require further investigation. This study aimed to explore the regulation of macrophage-secreted factors and their impact on muscle atrophy and glucose metabolism. By employing RNA sequencing (RNA-seq) and proteome array, we uncovered that factors secreted by lipopolysaccharide (LPS)-stimulated macrophages upregulated markers of muscle atrophy and pro-inflammatory cytokines, while concurrently reducing glucose uptake in muscle cells. The RNA-seq analysis identified alterations in gene expression patterns associated with immune system pathways and nutrient metabolism. The utilization of gene ontology (GO) analysis and proteome array with macrophage-conditioned media revealed the involvement of macrophage-secreted cytokines and chemokines associated with muscle atrophy. These findings offer valuable insights into the regulatory mechanisms of macrophage-secreted factors and their contributions to muscle-related diseases.

Age-dependent expression of ion channel genes in rat

  • Sung-Cherl Jung;Tong Zhou;Eun-A Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.85-94
    • /
    • 2023
  • Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.

Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics

  • Zhao, Tingting;Shen, Xiaojuan;Dai, Chang;Cui, Li
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.798-807
    • /
    • 2018
  • Several studies have reported the effect of absorption of procyanidins and their contribution to the small intestine. However, differences between dietary interventions of procyanidins and interventions via antibiotic feeding in pigs are rarely reported. Following 16S rRNA gene Illumina MiSeq sequencing, we observed that both procyanidin administration for 2 months (procyanidin-1 group) and continuous antibiotic feeding for 1 month followed by procyanidin for 1 month (procyanidin-2 group) increased the number of operational taxonomic units, as well as the Chao 1 and ACE indices, compared to those in pigs undergoing antibiotic administration for 2 months (antibiotic group). The genera Fibrobacter and Spirochaete were more abundant in the antibiotic group than in the procyanidin-1 and procyanidin-2 groups. Principal component analysis revealed clear separations among the three groups. Additionally, using the online Molecular Ecological Network Analyses pipeline, three co-occurrence networks were constructed; Lactobacillus was in a co-occurrence relationship with Trichococcus and Desulfovibrio and a co-exclusion relationship with Bacillus and Spharerochaeta. Furthermore, metabolic function analysis by phylogenetic investigation of communities by reconstruction of unobserved states demonstrated modulation of pathways involved in the metabolism of carbohydrates, amino acids, energy, and nucleotides. These data suggest that procyanidin influences the gut microbiota and the intestinal metabolic function to produce beneficial effects on metabolic homeostasis.

Genetic heterogeneity of liver cancer stem cells

  • Minjeong Kim;Kwang-Woo Jo;Hyojin Kim;Myoung-Eun Han;Sae-Ock Oh
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.94-108
    • /
    • 2023
  • Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.