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Introduction

Cancer stem cells (CSCs) have been identified in various 
cancers, including liver cancer [1-3]. Owing to their biological 
characteristics, including chemoresistance, radio resistance, 
dormancy, and metastatic potential, they have drawn a lot of 
attention from the research field. Although chemotherapeu-
tics can successfully reduce tumor volume, chemoresistant 
CSCs can survive and cause cancer relapse. Since the initial 
report of liver CSCs (LCSCs), many surface markers (epithe-
lial cell adhesion molecule [EpCAM], leucine-rich repeat-
containing G protein-coupled receptor 5 [LGR5], cluster of 

differentiation 133 [CD133], CD44, CD24, CD90, etc.) have 
been reported [2, 3]. In addition to identifying LCSC surface 
markers, the molecular maintenance mechanism of their 
stemness has also been explored. Signaling pathways, includ-
ing WNT, hedgehog, and Notch pathways, and transcription 
factors, including Nanog, Oct4, Sox2, and Myc, have been 
reported to be important for the maintenance of stemness 
in CSCs. Based on these advances in CSC research, some of 
them have been applied to the development of therapeutics.

Liver cancer is the third most common cause of cancer-
related death worldwide (GLOBOCAN 2020). It is the sixth 
most common type of cancer. The mortality rate has not 
improved over the last three decades. Notably, its incidence 
is expected to increase by approximately 60% between 2020 
and 2040 in Asia. Hepatocellular carcinoma (HCC) is the 
most common form of primary liver cancer. Therefore, new 
insights into the mechanisms underlying HCC are required 
for the development of diagnostics and therapeutics for liver 
cancer.
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Abstract: Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause 
chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of 
cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly 
characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. 
Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic 
mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 
genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the 
CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface 
markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion 
molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more 
than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study 
provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be 
considered in the development of LCSC-targeting therapeutics.
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Although therapeutics targeting CSC surface markers 
have been developed, their use frequently encounters new 
resistance, partly owing to the flexible hierarchy of CSCs [1]. 
New CSCs are generated from other daughter cells under in-
flammatory conditions, although CSCs that express specific 
CSC markers are eliminated by therapeutics. Another cause 
for the resistance in applying the therapeutics is the hetero-
geneity of CSCs. Single-cell transcriptomics and reports of 
many types of surface markers suggest the heterogeneity of 
CSCs. The CSC hypothesis is based on the assumption that 
these cells have the same genetic background as their daugh-
ter cells, although they are epigenetically different from each 
other. However, cancer cells within a tumor can have differ-
ent genetic backgrounds [4]. Therefore the genetic heteroge-
neity of LCSCs needs to be examined in detail.

In this study, to reveal genetic heterogeneity of LCSCs, 
we examined the genetic mutation status of LCSCs based on 
their surface markers (CD133, CD44, CD24, CD47, CD13, 
CD90, ICAM1, EpCAM, LGR5, keratin 19 [KRT19]). By ana-
lyzing Exome-Seq and RNA-Seq data of HCC (n=366) in the 
Cancer Genome Atlas (TCGA) database, we found that LC-
SCs are genetically heterogenous depending on their surface 
markers and some mutations are associated with a specific 
surface marker of LCSCs.

Materials and Methods

RNA-Seq and Exome-Seq data from TCGA were down-
loaded from the c-BioPortal. The TCGA cohort includes 
genomic information of 366 HCC patients. RNA and DNA 
were extracted from tumor and adjacent normal tissue 
specimens using a modification of the DNA/RNA AllPrep 
kit (QIAGEN, not single cell-Seq). The expression data for 
mRNA were batch-corrected to adjust for platform differ-
ences between the GAII and HiSeq Illumina sequencers. 
Somatic exome variant analysis was performed to remove 
potential germline calls as well as non-exonic variants. 
RNA-Seq data of TCGA were further classified based on the 
expression level (RNA-seq value) of each CSC marker. The 
high or low group based on each marker’s expression level 
was defined as a higher 25% or lower 25% of patients among 
HCC patients in the TCGA HCC cohort. The intermediate 
group was defined as 25%–75% of patients. The genes which 
were harboring mutations were further selected based on 
their relationship with cancer, whether they were cancer 
genes (OncoKB), and the frequency of HCC (>1.0%). Somatic 

exome mutations for each gene were further selected by SIFT 
(deleterious group) or PolyPhen score (probably damaging 
group), which predicts significant functional changes.

The correlation between the expression level of each can-
cer stem marker and the mutation of each cancer gene was 
evaluated using the chi-square test. Results with a P-value 
of <0.05 were regarded as statistically significant. Data were 
analyzed using IBM SPSS Statistics for Windows, version 
25.0 (IBM Corp., Armonk, NY, USA; RRID: SCR_002865).

Results and Discussion

CD133 (PROM1)
CD133 is a five-transmembrane single-chain glycopro-

tein that is usually localized in membrane protrusions [5-
8]. It may function as an organizer of cellular protrusion 
and regulate the number of microvilli and the structure of 
filopodia. Since its discovery in hematopoietic stem cells [5], 
its expression in other adult stem cells has been reported [9]. 
Its biological roles in proliferation, migration, metastasis, 
spheroid formation, and in vivo tumorigenicity of liver can-
cer cells have been reported [10-14]. Interestingly, its regula-
tory roles in angiogenesis, autophagy, metabolic reprogram-
ming, radio resistance, and chemoresistance have also been 
reported [15-21]. Its high expression is associated with poor 
survival in colon, lung, and liver cancers [22-25]. Its potential 
as a surface marker for CSCs has been suggested in lung, 
stomach, pancreas, colon, and liver cancers [25]. Moreover, 
many signaling pathways, including AKT, IL8-CXCL1, JNK, 
and NFκB, have been associated with CD133-positive cancer 
cells [12, 15, 26, 27]. Recently, CD133-targeted therapeutics, 
including antibodies, aptamers, T-cell therapies, viruses, and 
compounds, have been actively examined [28-32].

When we compared CD133-high HCC tissues with 
CD133-low tissues, we found that many kinds of cancer gene 
mutations were enriched in the CD133-high group (Fig. 1A, 
Table 1). Mutations in IRF2, TRRAP, and ASXL2 were not 
observed in the CD133-low group. Notably, the frequency 
of BAP1 mutations correlated with the expression levels 
of CD133. In addition to the BAP1 mutation, the mutation 
frequency of FGFR2, TLE4, MECOM, PBRM1, NOTCH1, 
and ERBB3 was at least three-fold higher in the CD133-high 
group than in the CD133-low group.

The association of some mutations in these cancer genes 
with CD133-positive CSCs has been reported. BAP1 muta-
tion is associated with the expression of stemness genes, in-
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cluding EpCAM and PROM1, and with their aggressiveness 
in liver cancer [33]. FGFR2-mediated signaling regulates the 
survival and proliferation of murine hepatoblasts and liver 
CSCs [34]. IRF2 knockdown has been associated with the 
chemoresistance of CD133-positive colon CSCs, in which 
IRF2 represses the promoter activity of PTPN13 leading to 
decreased expression of FAP1 [35]. Chemoresistance of colon 
CSCs is inf luenced by FAP1. The PBAF/PBRM1 pathway 
increased the expression of CD133 in prostate CSCs [36]. 
Notch1 regulated CD133-positive cancer stem-mediated mel-
anoma growth [37] and directly induced CD133 expression 
in gastric cancer [38]. ERBB3 expression has been observed 
in CD133-positive glioblastoma stem cells [39], and ERBB3 
targeting inhibited glioblastoma [40].

CD44
CD44 is a lymphocyte-homing receptor that interacts 

with the extracellular matrix, cell-cell interaction, adhesion, 
and migration [41-43]. It also functions as a glycoprotein re-
ceptor that interacts with various molecules, including hyal-
uronic acid, osteopontin, chondroitin, collagen, fibronectin, 
and metalloproteinases [44-48]. Notably, alternatively spliced 
variants are critical for cancer progression [49]. Moreover, 
its intracellular domain interacts with RNUX2 and regulates 
the transcription of MMP9 [50]. It regulates the migration, 

Table 1. Summary of frequently mutated genes in each LCSC group

Markers Frequently mutated genes
CD133 IRF2, TRRAP, ASXL2, FGFR2, TLE4, BAP1, MECOM, PBRM1, 

NOTCH1, ERBB3
CD44 JAK1, PIK3C2G, PTPRD, ATP1A1, KMT2A, POLQ, JAK3, NF1, 

ATXN7, STAT3
CD24 CDH1, ERBB3, FLT1, HIRA, BAP1, IDH1, CLTCL1, NFATC2, 

HIP1, CPS1
CD47 SOS1, IDH1, NUMA1, TSC2, NCOA3, CDH11, AFF1, ASXL2, 

PLCG1
CD13 BRCA2, NSD1, KDM4C, BAX, HSP0AA1, BAP1, PTPN13, TEK, 

MYH11, KDR, RAD50, RB1
CD90 CPS1, PAX3, CUX1, PTPRK, EPHA7, FOXP1, BAP1, CAMTA1, 

CDH1, ERBB3, WDR90
ICAM1 TSC2, CDH11, TLX3, SETD2, NFATC2, CHD4, NOTCH3, 

JARID2, KMT2C, ASXL2
EpCAM BAP1, NOTCH2, TLX3, CTCF, ASXL2, IRF2, DNMT3A, 

SMAD4, TEK, PED4DIP, RASA1, COL2A1
LGR5 EP300, DNMT3A, GMPS, EPHA5, CTNNB1, RELN, IL6ST, 

ROBO1, KIT, COL2A1
KRT19 IFR2, TLX3, NOTCH2, ERBB3, BAP1, CPS1, EPHB1, BCL11B, 

NFATC2, TET3

LCSC, liver cancer stem cell; CD, cluster of differentiation; ICAM1, 
Intercellular adhesion molecule 1; EpCAM, epithelial cell adhesion molecule; 
LGR5, leucine-rich repeat-containing G protein-coupled receptor 5; KRT19, 
keratin 19.
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Fig. 1. Gene mutations associated with 
CD133 (A) or CD44 (B) expression 
level in liver cancer (TCGA, n=366). 
The frequency is based on the number 
of patients who harbor a specific gene 
mutation and is shown to depend on 
the level of CD133 or CD44 (high, 
intermediate, and low). The Ki-square 
analysis showed a significant association 
between the CD133 or CD44 expres-
sion level, and the gene mutations. CD, 
cluster of differentiation; TCGA, The 
Cancer Genome Atlas.



Genetic heterogeneity of cancer stem cells

https://doi.org/10.5115/acb.22.161

Anat Cell Biol 2023;56:94-108 97

www.acbjournal.org

invasion, and metastasis of cancers and is associated with 
poor survival of cancer patients [49, 51]. Its potential as a 
surface marker for CSC has been suggested in various can-
cers, including colorectal, pancreatic, gastric, hepatocellular, 
and breast cancer [49]. The AKT, FoxM1, YAP/TEAD, and 
TGF-β signaling pathways have been associated with CD44-
expressing cancer cells [52-55].

When we compared CD44-high HCC tissues with CD44-
low tissues, we found that many kinds of cancer gene muta-
tions were enriched in the CD44-high group (Fig. 1B, Table 
1). Mutations in JAK1, PIK3C2G, and PTPRD were not 
observed in the CD44-low group. Notably, the frequency 
of POLQ mutations correlated with the expression level of 
CD44. In addition to POLQ mutations, the mutation fre-
quency of ATP1A1, KMT2A, JAK3, NF1, ATXN7, or STAT3 
was higher in the CD44-high group than in the CD44-low 
group by at least three-fold.

The association of some mutations in these cancer genes 
with CD44 expression has been reported. In addition to 
multiple myeloma [52, 56], the JAK-STAT signaling pathway 
regulates the expression of CD44. The interaction of STAT 
signaling and CD44 has been reported in breast cancer and 
ovarian CSCs [57, 58]. The inhibition of PIK3C2G inhibited 
the growth of breast CSCs [59]. The cooperation of PTPRD 
with CD44 for migration and progression has been reported 

in colon cancer, and its possible application to liver cancer 
has also been suggested [60, 61]. A KMT2A rearrangement 
was associated with CD44 in acute leukemia [62, 63]. The 
NF1-RAS pathway regulated mesenchymal transformation, 
leading to increased expression of CD44 in glioblastoma [64].

CD24
CD24 is a mucin-like glycoprotein that regulates the 

growth and differentiation of B-lymphocytes, neutrophils, 
and neuroblasts [65, 66]. It has been suggested to act as a 
brake on the immune system and as an antiphagocytic 
surface protein [67]. It has been reported to be expressed in 
ovarian cancer, breast cancer, non-small cell lung cancer, 
prostate cancer, pancreatic cancer, and HCC [68, 69]. It regu-
lates proliferation, migration, and invasion of cancer cells [66, 
68, 70]. It has been suggested as a surface marker for CSC in 
breast cancer, gastric cancer, cervical cancer, multiple my-
eloma, cholangiocarcinoma, and HCC and regulates the dif-
ferentiation and metastasis of liver cancer cells [71-76]. More-
over, its expression was associated with a poor prognosis in 
patients with liver cancer. Its association with the STAT3-
NANOG pathway has been reported [77].

When we compared CD24-high HCC tissues with CD24-
low tissues, we found that many types of cancer gene muta-
tions were enriched in the CD24-high group (Fig. 2A, Table 
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Fig. 2. Gene mutations associated with 
CD24 (A) or CD47 (B) expression 
level in liver cancer (TCGA, n=366). 
The frequency is based on the number 
of patients who harbor a specific gene 
mutation and is shown to depend on 
the level of CD24 or CD47 (high, 
intermediate, and low). The Ki-square 
analysis showed a significant association 
between the CD24 or CD47 expression 
level, and the gene mutations. CD, 
cluster of differentiation; TCGA, The 
Cancer Genome Atlas.
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1). Mutations in CDH1, ERBB3, FLT1, and HIRA were not 
observed in the CD24-low group. Notably, the frequency 
of BAP1 mutations correlated with the expression level of 
CD24. In addition to the BAP1 mutation, the mutation fre-
quency of IDH1, CLTCL1, NFATC2, HIP1 and CPS1 was 
higher in the CD24-high group than in the CD24-low group 
by at least three-fold.

The association of some mutations in these cancer genes 
with CD24 expression has been reported. CDH1 knockdown 
has been associated with the enrichment of CD24-positive 
colon CSCs [78]. ERBB2/3 contributes to the conversion of 
induced pluripotent stem cells into CSCs. Hypoxia activates 
HIF, resulting in the upregulation of the “do not-eat-me” 
signal surface markers (CD24 and CD47) and vascular en-
dothelial growth factor, which bind to FLT1 in liver cancer 
[79]. IDH mutation induced phenotypic reprogramming in 
glioma, resulting in the generation of CSCs and an increase 
in CD24-positive cells [80, 81].

CD47
CD47 is a transmembrane protein that belongs to the im-

munoglobulin superfamily and forms supramolecular com-
plexes with integrins, G proteins, and cholesterol [82, 83]. It 
interacts with signal-regulatory protein α (SIRPα), thrombo-
spondin 1, and integrins, and is involved in proliferation, mi-
gration, phagocytosis, apoptosis, and immune homeostasis. 
Its overexpression has been frequently observed in various 
cancer cells, including myeloma, leiomyosarcoma, acute lym-
phocytic leukemia, non-Hodgkin’s lymphoma, breast cancer, 
osteosarcoma, head and neck squamous cell carcinoma, and 
liver cancer [82]. It inhibits macrophage-mediated phago-
cytosis by interacting with SIRPα [84, 85]. It has also been 
found to be expressed in CSCs in leukemia, glioma, pancre-
atic cancer, and liver cancer [86-89]. It regulates self-renewal, 
metastasis, and chemoresistance in LCSCs [87]. It is a poor 
prognostic factor in liver cancer and is associated with the 
cathepsin S (CTSS)-protease-activated receptor 2 signaling 
pathway by preferentially secreting CTSS [87]. Therapeutics 
targeting CD47 have been actively investigated [90-93].

When we compared CD47-high HCC tissues with CD47-
low tissues, we found that many kinds of cancer gene muta-
tions were enriched in the CD47-high group (Fig. 2B, Table 
1). Mutations in SOS1, IDH1, and NUMA1 were not observed 
in the CD47-low group. Notably, the frequency of the TSC2 
mutation correlated with the expression level of CD47. In 
addition to the TSC2 mutation, the mutation frequencies of 

NCOA3, PTPRB, CDH11, and JAK1 were at least three-fold 
higher in the CD47-high group than in the CD47-low group. 
Interestingly, PLCG1 was overexpressed in chronic lympho-
cytic leukemia cells and CD47 was a good therapeutic target 
in these cells [94].

CD13 (ANPEP)
CD13 is a zinc-dependent type II exopeptidase located 

in the plasma membrane and engaged in the post-secretory 
processing of secreted signaling peptides and their binding 
to their receptors [95]. It is expressed in the kidney, intestine, 
liver, and central nervous system. It regulates proliferation, 
invasion, angiogenesis, chemoresistance, and radio resistance 
of cancer cells [96-98]. Its expression has been associated 
with poor prognosis in various cancers, including pancreatic 
and colon cancers, non-small cell lung cancer, malignant 
pleural mesothelioma, hepatoblastoma, and soft tissue sarco-
ma [97, 99-103]. It has been suggested to be a surface marker 
for CSC in liver cancer and is associated with the TGF-β sig-
naling pathway [104-106].

When we compared CD13-high HCC tissues with CD13-
low tissues, we found that many kinds of cancer gene muta-
tions were enriched in the CD13-high group (Fig. 3A, Table 1). 
Mutations in BRCA2, NSD1, KDM4C, BAX, and HSP90AA1 
were not observed in the CD13-low group. Notably, the fre-
quency of BAP1 and RB1 mutations correlated with the ex-
pression level of CD13. In addition, the mutation frequency 
of PTPN13, TEK, MYH11, KDR, and RAD50 was at least 
three-fold higher in the CD13-high group than in the CD13-
low group.

The association of some mutations in these cancer genes 
with CD13 expression has been reported. Overexpression 
of KDM4C was observed in CD13-positive LCSCs [107]. Its 
depletion decreased tumor initiation, as examined by sphere 
formation and xenograft assays. Angiopoietin increased the 
expression of CD13 via the TEK (TIE2) receptor in pericytes 
[108].

CD90 (THY1)
CD90 is a glycosylphosphatidylinositol-anchored glyco-

protein expressed in thymocytes, neurons, mesenchymal 
stem cells, hepatic stem cells, natural killer cells, T cells, and 
endothelial cells [109, 110]. It is involved in cell-cell and cell-
matrix interactions, apoptosis, and migration. It can pro-
mote tumorigenesis, metastasis, and chemoresistance and is 
a prognostic factor [111]. It has been suggested as a surface 
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marker for CSC in HCC that does not express EpCAM [112, 
113]. IL6, hedgehog, and AKT signaling pathways have been 
associated with CD90 [114, 115].

When we compared CD90-high HCC tissues with CD90-
low tissues, we found that many types of cancer gene muta-
tions were enriched in the CD90-high group (Fig. 3B, Table 
1). Mutations in CPS1, PAX3, CUX1, EPHA7, and FOXP1 
were not observed in the CD90-low group. Notably, the 
frequency of BAP1 mutations correlated with the expres-
sion level of CD90. In addition, the mutation frequencies of 
CAMTA1, CDH1, ERBB3 and WDR90 were at least three-fold 
higher in the CD90-high group than in the CD90-low group. 
A previous study reported that increased FOXP1 expression 
was observed in CD90-positive hematopoietic stem cells, 
which contributed to leukemic cell growth [116].

ICAM1
ICAM1 is a cell surface glycoprotein and an adhesion re-

ceptor in various cell types, including immune, endothelial, 
and epithelial cells [117]. It is a ligand for the leukocyte adhe-
sion protein LFA1. It regulates the metastasis and tumori-
genic potential of liver cancer cells and is a marker for CSC 
[118, 119]. It is a poor prognostic factor for liver cancer and is 
associated with Nanog expression [119].

When we compared ICAM1-high HCC tissues with 

ICAM1-low tissues, we found that many kinds of cancer 
gene mutations were enriched in the ICAM1-high group (Fig. 
4A, Table 1). Mutations in TSC2, CDH11, and TLX3 were not 
observed in the ICAM1-low group. The mutation frequency 
of SETD2, NFATC2, CHD4, NOTCH3, JARID2, KMT2C, 
and ASLX2 was at least three-fold higher in the ICAM1-high 
group than in the ICAM1-low group.

The association of some mutations in these cancer genes 
with ICAM1 expression has been reported. NFAT belongs 
to the Rel homology domain-containing family of transcrip-
tion factors and can recognize DNA sequences that can be 
recognized by NF-κB [120, 121]. NFATC2 siRNA decreased 
TNFα-induced ICAM1 expression and cell adhesion in hu-
man retinal microvascular endothelial cells [122]. TGF-β1 
increased Notch3 and ICAM1 expression levels in hepatic 
stellate cells, and the Notch pathway was important in 
TGF-β1 induced activation of hepatic stellate cells [123].

EpCAM
EpCAM is a type I membrane protein containing two 

EGF-like domains [124, 125]. Its expression has been re-
ported in various types of carcinomas. It regulates the self-
renewal and tumorigenesis of cancer cells and is a surface 
marker for CSC [126]. WNT, CHD4, and OSM signaling 
pathways have been linked to EpCAM-positive liver cancer 
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Fig. 3. Gene mutations associated with 
CD13 (A) or CD90 (B) expression 
level in liver cancer (TCGA, n=366). 
The frequency is based on the number 
of patients who harbor a specific gene 
mutation and is shown to depend on 
the level of CD13 or CD90 (high, 
intermediate, and low). The Ki-square 
analysis showed a significant association 
between the CD13 or CD90 expression 
level, and the gene mutations. CD, 
cluster of differentiation; TCGA, The 
Cancer Genome Atlas.
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cells [127-129].
When we compared EpCAM-high HCC tissues with Ep-

CAM-low tissues, we found that many kinds of cancer gene 
mutations were enriched in the EpCAM-high group (Fig. 
4B, Table 1). Mutations in BAP1, NOTCH2, TLX3, CTCF, 
ASXL2, IRF2, DNMT3A and SMAD4 were not observed in 
the EpCAM-low group. Notably, the frequency of the BAP1 
mutation correlated with the expression level of EpCAM. In 
addition, the mutation frequency of TEK, PED4DIP, RASA1, 
and COL2A1 was at least three-fold higher in the EpCAM-
high group than in the EpCAM-low group.

The association of some mutations in these cancer genes 
with EpCAM expression has been reported. BAP1 knock-
down is associated with EpCAM overexpression in HCC [33]. 
Moreover, BAP1 knockout in human liver organoids also 
resulted in overexpression. NOTCH2 knockdown downregu-
lated EpCAM expression [130]. Inhibition of Notch signal-
ing reduced EpCAM expression [131]. IRF2 regulated the 
stemness of intestinal stem cells, and IRF2 deletion impaired 
regeneration of the colon epithelium [132]. Displacement 
of DNMT3A and DNMT3B by DNMT3L contributed to the 
overexpression of EpCAM in HCCs [133]. The TGF signaling 
pathway regulated EpCAM expression in liver cancer [134].

LGR5
LGR5 is a G-protein-coupled receptor that contains seven 

transmembrane domains [135]. It can bind to R-spondin 1–4 
proteins and associate with phosphorylated LRP6 and friz-
zled receptors. It is expressed in stem cells of the intestine, 
ovary, hair follicle, mammary gland, and stomach [136-139]. 
It regulates regeneration of the intestine, colon, liver, pan-
creas, and stomach [140-142]. In liver cancer cells, it regulates 
tumorigenic potential, chemoresistance, and migration [143]. 
LGR5-positive liver cancer cells have been associated with 
the HGF, LSD1, Prickle, and WNT signaling pathways [144, 
145].

When we compared LGR5-high HCC tissues with LGR5-
low tissues, we found that many types of cancer gene muta-
tions were enriched in the LGR5-high group (Fig. 5A, Table 
1). Mutations in EP300, DNMT3A, GMPS, and EPHA5 were 
not observed in the LGR5-low group. Notably, the frequency 
of CTNNB1 mutations correlated with the expression level of 
LGR5. In addition, the mutation frequency of RELN, IL6ST, 
ROBO1, KIT, and COL2A1 was at least three-fold higher in 
the LGR5-high group than in the LGR5-low group.

The association of some mutations in these cancer genes 
with LGR5 expression has been reported. LGR5 is a target 
gene of the WNT signaling pathway [146]. Therefore, the 
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Fig. 4. Gene mutations associated with 
ICAM1 (A) or EpCAM (B) expression 
level in liver cancer (TCGA, n=366). 
The frequency is based on the number 
of patients who harbor a specific gene 
mutation and is shown to depend on 
the level of ICAM1 or EpCAM (high, 
intermediate, and low). The Ki-square 
analysis showed a significant association 
between the ICAM1 or EpCAM ex-
pression level, and the gene mutations. 
ICAM1, Intercellular adhesion molecule 
1; EpCAM, epithelial cell adhesion 
molecule; TCGA, The Cancer Genome 
Atlas.
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CTNNB1 mutation is associated with LGR5 expression in 
various cancer cells. EP300 modifies CTNNB1 and regulates 
the interaction between CTNNB1 and TCF4 [147]. DNMT3A 
expression was observed in LGR5-positive colon CSCs, and 
its deletion inhibited intestinal tumor development [148]. 
The YAP-IL6ST loop increased the expression of LGR5 dur-
ing the progression of colon cancer progression [149]. Slit2 
overexpression maintained LGR5+ stem cell proliferation in 
the intestinal crypt, and Robo1/2 partial knockout reduced 
the number of LGR5-positive stem cells [150]. cKit-positive 
cells in the mouse colon promote organoid formation via 
LGR5-positive stem cells [151].

KRT19
KRT19 is an intermediate filament protein involved in 

myofiber organization [152]. It is expressed in the bipotential 
cells of the liver and regulates fluorine-18 deoxyglucose ac-
cumulation [153]. It regulates proliferation, chemoresistance, 
tumorigenicity, invasion, and metastasis of liver cancer cells 
[154]. It has been reported to be a poor prognostic factor [155, 
156]. TGF-β, PDGFR, and HGF signaling pathways have 
been associated with KRT19-positive liver cancer cells [153, 
157, 158].

When we compared KRT19-high HCC tissues with 
KRT19-low tissues, we found that many types of cancer gene 

mutations were enriched in the KRT19-high group (Fig. 5B, 
Table 1). Mutations in IRF2, TLX3, NOTCH2, and ERBB3 
were not observed in the KRT19-low group. Notably, the 
frequency of BAP1 mutations correlated with the expression 
level of KRT19. In addition, the mutation frequency of CPS1, 
EPHB1, BCL11B, NFATC2, and TET3 was at least three-fold 
higher in the KRT19-high group than in the KRT19-low 
group.

The association of some mutations in these cancer genes 
with KRT19 expression has been reported. Inhibition of 
Notch signaling reduced KRT19-positive cells during murine 
lacrimal gland formation [159]. Moreover, the expression of 
KRT19 in HCC cells was associated with the expression of 
NOTCH2 [154]. BAP1 knockdown was associated with the 
overexpression of KRT19 [33].

The heterogeneous composition of cancer cells in the 
tumor is a great challenge for oncologists because it is a criti-
cal cause of tumor relapse, chemoresistance, and metastasis. 
Genetic and epigenetic changes are the underlying mecha-
nisms of cancer cell heterogeneity in tumors. In the present 
study, we examined the genetic mutation status of LCSCs 
and found genetic heterogeneity depending on markers for 
LCSCs (Table 1).

Different surface markers for LCSCs showed a unique 
pattern of propensity for genetic mutations (Table 1). CD133-
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Fig. 5. Gene mutations associated with 
LGR5 (A) or KRT19 (B) expression 
level in liver cancer (TCGA, n=366). 
The frequency is based on the number 
of patients who harbor a specific gene 
mutation and is shown to depend on 
the level of LGR5 or KRT19 (high, 
intermediate and low). The Ki-square 
analysis showed a significant association 
between the LGR5 or KRT expression 
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TCGA, The Cancer Genome Atlas.
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positive cells showed frequent mutations in IRF2, BAP1, and 
ERBB3. However, LGR5-positive cells showed frequent mu-
tations in CTNNB1, RELN, and ROBO1. These results sug-
gest that targeting a specific surface marker cannot remove 
other types of CSCs that express different surface markers. 
Therefore, genetic classification of cancer is required for the 
development of stem cell therapies for cancer.

Notably, some genetic mutations were frequently ob-
served irrespective of the surface markers of LCSCs (Table 1). 
BAP1 mutation was frequently observed in CD133-, CD24-, 
CD13-, CD90-, EpCAM- or KRT19-positive LCSCs. ASXL2 
mutation was also frequently observed in CD133-, CD47-, 
ICAM1-, and EpCAM-positive LCSCs. Mutations in ERBB3, 
IRF2, TLX3, CPS1, and NFATC2 were observed in more than 
three types of LCSCs. Interestingly, some surface marker-
positive cells showed common mutations. For example, 
ASXL2, BAP1, and IRF2 mutations were observed in both 
CD133-positive and EpCAM-positive cells. These results 
suggest that there are some common mechanisms for the 
development of LCSCs that need to be considered in the de-
velopment of LCSC-targeting therapeutics.

In conclusion, based on above results we conclude that 
LCSCs are genetically heterogenous depending on their 
surface markers. In addition some mutations are frequently 
found in a LCSC group which expresses a specific surface 
marker. These results suggest that when therapeutics target-
ing LCSCs which express a specific marker, are considered 
for the treatment, mutational profiling of patients needs to 
be examined for the possibility of combination therapy. In 
addition, the existence or the new generation of other kinds 
of LCSCs needs to be considered for the treatment because 
the mutation status of patients is complex and always chang-
ing, which can lead to the new generation of other kinds of 
LCSCs.
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