• Title/Summary/Keyword: separation capacitor

Search Result 14, Processing Time 0.024 seconds

Characteristics Analysis of ZVS-HB Type High Frequency Resonant Inverter According to the Variable Capacitance of the DC Voltage Source Separation Capacitor (직류 전원 분할용 커패시터의 용량 변화에 따른 ZVS-HB형 고주파 공진 인버터의 특성해석)

  • Mun, Chang-Su;Kim, Jong-Hae;Kim, Dong-Hui;O, Seung-Hun;Sim, Gwang-Yeol;Min, Byeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.352-357
    • /
    • 2000
  • This paper presents about an example of circuit design and characteristics of inverter according to the variable capacitance of the DC voltage source separation capacitor used in ZVS-HB type high frequency resonant inverter. The soft switching technology known as ZVS is used to reduce turn off loss at switching. In the event the capacitance of the DC voltage source separation capacitor is varied, the analysis of inverter circuit has generally described by using normalized parameter and operating characteristics have been evaluated in terms of switching frequency and parameters. According to the calculated characteristics value, a method of the circuit designs and operating characteristic of the inverter is also presented in this paper. In addition, this paper proves the validity of theoretical analysis through the experiment. This proposed inverter shows that it can be practically used in future as power source system for the lighting equipment of discharge lamp, DC-DC converter etc.

  • PDF

Application of the Method of Moments to the Capacitance Computation of a Parallel-Plate Rectangular Capacitor

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.93-99
    • /
    • 2014
  • The method of moments is applied to numerically compute the electrostatic capacitance of a parallel-plate rectangular capacitor of finite area. Each plate is discretized into 900 patches per unit area to ensure a high accuracy of computation. To further enhance computational results, the impedance matrix elements are additionally evaluated in the case that the observation patch is located above or below the source patch in the vertical direction. To examine the fringing effect at the edges of the capacitor, the normalized capacitances are computed as a function of separation distance. After these results have been verified by Palmer's formula, this method is extended to the computation of capacitances between two different size plates.

Development of Heterojunction Electric Shock Protector Device by Co-firing (동시소성형 감전소자의 개발)

  • Lee, Jung-soo;Oh, Sung-yeop;Ryu, Jae-su;Yoo, Jun-seo
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • Recently, metal cases are widely used in smart phones for their luxurious color and texture. However, when a metal case is used, electric shock may occur during charging. Chip capacitors of various values are used to prevent the electric shock. However, chip capacitors are vulnerable to electrostatic discharge(ESD) generated by the human body, which often causes insulation breakdown during use. This breakdown can be eliminated with a high-voltage chip varistor over 340V, but when the varistor voltage is high, the capacitance is limited to about 2pF. If a chip capacitor with a high dielectric constant and a chip varistor with a high voltage can be combined, it is possible to obtain a new device capable of coping with electric shock and ESD with various capacitive values. Usually, varistors and capacitors differ in composition, which causes different shrinkage during co-firing, and therefore camber, internal crack, delamination and separation may occur after sintering. In addition, varistor characteristics may not be realized due to the diffusion of unwanted elements into the varistor during firing. Various elements are added to control shrinkage. In addition, a buffer layer is inserted in the middle of the varistor-capacitor junction to prevent diffusion during firing, thereby developing a co-fired product with desirable characteristics.

An Analysis of Voltage Characteristics for LC Resonant Frequency Band of Capacitor Compensation According to Moving of Electrical Separation Equipment of AF Track Circuit (AF궤도회로의 전기적 구분 장치 설치이전에 따른 커패시터 보상으로 LC공진 주파수 대역의 전압특성 분석)

  • Won, Seo-Yeon;Choi, Jae-Sik;Park, Hun-Jue;Kim, Hie-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1466-1477
    • /
    • 2016
  • This paper analyzes the electrical characteristic such as the impedance(Z), inductance(L), and cable resistance($R_p$) according to the change of cable length in order to move the electrical sorting device for distinguishing between AF non-insulated track circuits from the center of railway to outside railway. The simulation is performed to check the voltage difference between the voltage of sender and the voltage of receiver and determine the possibility of the voltage restoration availability in the frequency filter band through the capacitor compensation. It was applied to the results of the simulation to the sorting devices installed in the actual field. It is proved the availability by checking the measured voltage characteristic according to the capacitor compensating change of $10{\mu}F$ and $16{\mu}F$ before, and after the length of cable is increased with 6 meters. Through this, the prevention of breakdown and damage to facilities and the prevention the safety-related accidents of line workers from the train are expected according to moving the sorting devices of AR non-insulated track circuits to outside railway.

Volumetric Capacitance of In-Plane- and Out-of-Plane-Structured Multilayer Graphene Supercapacitors

  • Yoo, Jungjoon;Kim, Yongil;Lee, Chan-Woo;Yoon, Hana;Yoo, Seunghwan;Jeong, Hakgeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.250-256
    • /
    • 2017
  • A graphene electrode with a novel in-plane structure is proposed and successfully adopted for use in supercapacitor applications. The in-plane structure allows electrolyte ions to interact with all the graphene layers in the electrode, thereby maximizing the utilization of the electrochemical surface area. This novel structure contrasts with the conventional out-of-plane stacked structure of such supercapacitors. We herein compare the volumetric capacitances of in-plane- and out-of-plane-structured devices with reduced multi-layer graphene oxide films as electrodes. The in-plane-structured device exhibits a capacitance 2.5 times higher (i.e., $327F\;cm^{-3}$) than that of the out-of-plane-structured device, in addition to an energy density of $11.4mWh\;cm^{-3}$, which is higher than that of lithium-ion thin-film batteries and is the highest among in-plane-structured ultra-small graphene-based supercapacitors reported to date. Therefore, this study demonstrates the potential of in-plane-structured supercapacitors with high volumetric performances as ultra-small energy storage devices.

Measurement of Plasma Density Generated by a Semiconductor Bridge: Related Input Energy and Electrode Material

  • Kim, Jong-Dae;Jungling, K.C.
    • ETRI Journal
    • /
    • v.17 no.2
    • /
    • pp.11-19
    • /
    • 1995
  • The plasma densities generated from a semiconductor bridge (SCB) device employing a capacitor discharge firing set have been measured by a novel diagnostic technique employing a microwave resonator probe. The spatial resolution of the probe is comparable to the separation between the two wires of the transmission lines (${\approx}$3 mm). This method is superior to Langmuir probes in this application because Langmuir probe measurements are affected by sheath effects, small bridge area, and unknown fraction of multiple ions. Measured electron densities are related to the land material and input energy. Although electron densities in the plasma generated by aluminum or tungsten-land SCB devices show a general tendency to increase steadily with power, at the higher energies, the electron densities generated from tungsten-land SCB devices are found to remain constant.

  • PDF

Measurement of Adhesion Strength for Ceramic Sheet (세라믹 박판의 접착 강도 측정)

  • Huh, Y.H.;Kim, D.I.;Kim, D.J.;Lee, K.;Kim, D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1798-1802
    • /
    • 2007
  • Adhesion strength of single layer ceramic capacitor sheet was measured using a peel testing system developed in this study. The peel test specimens with various dimensions were prepared from the ceramic sheet cast on the PET film. In peel test, the sheet specimen was adhered on the glass jig floating on the liquid media, which was designed to minimize the friction, and the specimen was then pulled up by micro-actuator. During the separation of the sheet from the PET film, peel force was measured. To normalize the testing condition, 3 different widths of the specimen were selected: 5, 10 and 20 mm. was used Furthermore, testing speed effect was investigated in this study. From the resullts using various testing conditions, the standard method for the peel strength testing may be suggested. Based on the testing condition, effect of peel angle on the strength was experimentally examined. It was found that the adhesive strength for the ceramic sheet is nearly identical, irrespective of the specimen width ranged from 5 to 20 mm, while the adhesive strength was increased with increasing testing speed. Furthermore, the strength was shown to be dependent on the peel angle.

  • PDF

Design and Fabrication of Implantable LC Resonant Blood Pressure Sensor (인체 삽입용 LC 공진형 혈압 센서 디자인 및 제작)

  • Kim, Jin-Tae;Kim, Sung Il;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.171-176
    • /
    • 2013
  • In this paper, we present a MEMS (micro-electro-mechanical system) implantable blood pressure sensor which has designed and fabricated with consideration of size, design flexibility, and wireless detection. Mechanical and electrical characterizations of the sensor were obtained by mathematical analysis and computer aided simulation. The sensor is composed of two coils and a air gap capacitor formed by separation of the coils. Therefore, the sensor produces its resonant frequency which is changed by external pressure variation. This frequency movement is detected by inductive coupling between the sensor and an external antenna coil. Theoretically analyzed resonant frequency of the sensor under 760 mmHg was calculated to 269.556 MHz. Fused silica was selected as sensor material with consideration of chemical and electrical reaction of human body to the material. $2mm{\times}5mm{\times}0.5mm$ pressure sensors fitted to radial artery were fabricated on the substrates by consecutive microfabrication processes: sputtering, etching, photolithography, direct bonding and laser welding. Resonant frequencies of the fabricated sensors were in the range of 269~284 MHz under 760 mmHg pressure.

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications (전기이중층 커패시터용 내재적 미세 다공성 고분자 기반 3차원 다공성 탄소 전극)

  • Han, Jae Hee;Suh, Dong Hack;Kim, Tae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.759-764
    • /
    • 2018
  • 3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.

An Unequal Divider with Enhanced Physical Isolation Between Output Ports (출력포트 사이의 물리적 격리도를 향상시킨 비대칭분배기)

  • Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.359-363
    • /
    • 2014
  • This paper presents the design and performance of an unequal divider with physical separation and electrical isolation. This divider has a series $18{\Omega}$ resistor and 0.7 pF capacitor circuit between two quarter-wave transmission lines at half phase angle from input terminal. This design method was improved a physical isolation between output ports and easy connected other circuit because of unnecessary of extra transmission line. To show the validity of the unequal divider with complex isolation components, a 4:1 ratio unequal divider was designed and measured at center frequency of 2 GHz. The measured divider performances have the return loss of 17 dB, insertion loss of 1.5 dB and 7.7 dB, and isolation of 18 dB. Its performance is in good agreement with the simulated results.