• Title/Summary/Keyword: sensory neurons

Search Result 165, Processing Time 0.023 seconds

Effects of Sopunghwalhyul-tang Water Extract against Xanthine Oxidase / Hypoxanthine(XO/HX)-Induced Neurotoxicity in the Cultured Mouse Spinal Sensory Neurons (소풍활혈탕 열탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 영향)

  • 양경석;신선호
    • The Journal of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • In order to elucidate the toxic mechanism of oxygen radicals in cultured mouse spinal sensory neurons, cytotoxic effect of oxygen radicals was evaluated by M1T assay and NR assay. In addition, protective effect of Sopunghwalhyultang(SPHHT) water extract on oxidant-induced neurotoxicity was investigated on these cultures. Spinal sensory neurons derived from mice were cultured in mediums containing various concentrations of Xanthine Oxidase / Hypoxanthine(XO/HX). Cell viability was measured by MTT assay and NR assay. XO/HX-mediated oxygen radicals remarkably decreased cell viability of cultured spinal sensory neurons in a dose-and time-dependent manner. And also, SPHHT blocked XO/HX-induced neurotoxicity in these cultures. These results suggest that oxygen radicals are toxic and SPHHT are effective in blocking against the oxidant-induced neurotoxicity in cultures of spinal sensory neurons of mice.

  • PDF

Effects of Scorpio water extract on Cultured Spinal Sensory Neurons Damaged by Xanthine Oxidase/Hypoxanthine (전갈 전탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 효과)

  • Yang Heung Su;Kwon Kang Beom;Song Yong Sun;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.553-556
    • /
    • 2002
  • To study the effects of Scorpio on oxygen free radical-mediated damage by xanthine oxidase/hypoxanthine (XO/HX) on cultured spinal sensory neurons, in vitro assays such as MTT assay were used in cultured spinal sensory neurons derived from mice. Spinal sensory neurons were cultured in media containing various concentrations of XO/HX for 6 hours, after which the neurotoxic effect of XO/HX was measured by in vitro assay. The protective effect of the herb extract, Scorpio water extract against XO/HX-induced neurotoxicity was also examined. The results are as follows : In MTT assay, XO/HX significantly decreased the cell viability of cultured mouse spinal sensory neurons according to exposure concentration and time in these cultures. The effect of Scorpio water extract on XO/HX-induced neurotoxicity showed a quantitative increase in neurdfilament. These results suggest that XO/HX has a neurotoxic effect on cultured spinal sensory neurons from mice and that the herb extract, Scorpio water extract, was very effective in protecting XO/HX-induced neurotoxicity.

Localization of Motor and Sensory Neurons Innervating Kidney, Shinsu(BL23) and Kyongmun(GB25) in the Rat (흰쥐의 신장(腎臟) 신유(腎兪) 경문(京門)을 지배하는 운동(運動)과 감각신경세포체(感覺神經細胞體)에 대한 연구(硏究))

  • Ryu, Suk-Hyun;Lee, Chang-Hyeon;Lee, Sang-Ryong
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.385-398
    • /
    • 1997
  • The location and local arrangement of motor, sensory neurons within brain stem, nodose ganglia, spinal ganglia and sympathetic ganglia projecting to rat's kidney and meridian point BL 23, GB 25 were investigated by HRP immunohistochemical methods following injection of 5% WGA-HRP into left kidney and meridian point BL 23, GB 25. Following injection of WGA-HRP into left kidney, anterogradely labelled sensory neurons were founded within either nodose ganglia and spinal ganglia. The sensory neurons innervating rat's left kidney were observed within spinal ganglia $T_{7}{\sim}L_3$. Sympathetic motor neurons innervating rat's left kidney were labelled within left suprarenal ganglia, either celiac ganglia, superior mesenteric ganglia, and sympathetic chain ganglia $T_{1}{\sim}L_3$. Sympathetic chain ganglia were concentrated in $T_{12}{\sim}L_1$. The sensory neurons innervating rat's meridian point BL 23 were founded within spinal ganglia $T_{2}{\sim}L_2$. They were numerous in spinal in ganglia $T_{10}{\sim}T_{12}$. Sympathetic motor neurons innervating rat's meridian point BL 23 were observed in suprarenal ganglia and greater splanchnic trunk, sympathetic chain ganglia from $T_1$ to $L_3$. They were concentrated in $T_{12}{\sim}L_3$. The sensory neurons innervating rat's meridian point GB 25 were labelled within spinal ganglia $T_{6}{\sim}T_{13}$. They were numerous in from T10 to $T_{12}$. Sympathetic motor neurons innervating rat's meridian point GB 25 were labelled within greater splanchnic trunk and sympathetic chain ganglia $T_{12}{\sim}L_3$. They were concentrated in $T_{13}{\sim}L_1$. This results neuroanatomically imply that the location of rat's motor and sensory neurons innervating meridian point BL 23 and GB 25 were closely related that of innervating kidney.

  • PDF

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

Development of muscle sensory neurons and monosynaptic stretch reflex circuit (근육 감각 신경과 단일연접 신전반사 회로의 발달)

  • Kim, Sik-Hyun
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.57-66
    • /
    • 2007
  • This review discusses the development of muscle receptors, in particular, that of muscle sensory neurons and monosynaptic stretch reflex circuit. The development of muscle sensory neurons and monosynaptic stretch reflex requires a series of steps including expression of neurotrophic transcriptional factors and their receptor. The monosynaptic stretch reflex circuit is unique neuronal circuit system, and highly precise synaptic connection systems. Thus, coordination of sensory-motor function in muscle receptors depend on the expression of distinct classes of molecular cues, and on the formation of selective synaptic connections between sensory-motor neurons and their target muscle. Recent neurotrophic and transcription factor expression studies have expanded our knowledge on how muscle sensory neuron is formed, and how sensory-motor system is developed.

  • PDF

Effects of Herbar Chelidonii on the Cultured Spinal Sensory Neurons Damaged by XO/HX (백굴채(白屈菜)가 손상된 배양척수감각신경세포에 미치는 영향)

  • Shin, Byung-Cheul;Song, Yung-Sun
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.2 no.1
    • /
    • pp.143-157
    • /
    • 2001
  • Objectives and Methods : To evaluate the mechanism of oxidative damage by xanthine oxydase(XO) and hypoxanthine(HX)-induced oxygen radicals, MTT assay and NR assay were carried out after the cultured mouse spinal sensory neurons were preincubated for 4 hours with various concentrations of XO/HX. And the amount of total protein. neurofilament EIA. lipid peroxidation and LDH activity were measured, to evaluate the protective effect of Herbar Chelidonii(HC) water extract on cultured spinal sensory neurons damaged by XO/HX. after the cultured mouse spinal sensory neurons were preincubated with various concentrations of HC water extract for 3 hours prior to exposure of XO/HX. Results : XO/HX decreased significantly the survival rate of the cultured mouse sensory neurons by NR assay and MTT assay In proportion to concentration and exposed time. In proportion to concentration and exposed time on cultured spinal sensory neurons, XO/HX showed the quantitative decrease of neurofilament by EIA. the decrease of total protein amount by SRB assay and the Increase of lipid peroxidation as well as LDH. HC showed the quantitative increase of neurofilament and total protein, but showed the decrease of lipid peroxidation and LDH activity against the neurotoxicity of XO/HX. Conclusions : From the above results, it is concluded that XO/HX have a neurotoxic effect on cultured spinal sensory neurons and that the herbs extract, such as HC, prevent the toxicity of XO/HX effectively in that they decrease lipid peroxidation and LDH activity.

  • PDF

Morphological Studies on the Localization of Neurons Projecting to the Meridian Points Related to the Facial Nerve Paralysis in the Rat Using the Neural Tracers (신경추적자(神經追跡子)를 이용한 얼굴신경마비(神經痲痺)와 관련(關聯)된 혈(穴)들을 지배(支配)하는 신경세포체(神經細胞體)의 표식부위(標識部位)에 대(對)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jum-Young;Lee, Sang-Ryoung;Lee, Chang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.58-71
    • /
    • 1997
  • In order to the location and local arrangement of nerve cell bodies and nerve fibers projecting to the meridian points related to facial nerve paralysis in the rat using the neural tracers, CTB and WGA-HRP, labeled neurons the were investigated by immunohistochemical and HRP histochemical methods following injection of 2.5% WGA-HRP and 1% CTB into Hyopko$(S_6)$. Chichang$(S_4)$, Sugu$(GV_{26})$, Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$. Following injection of Hyopko$(S_6)$, Chichang$(S_4)$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus, reticular nucleus and hypoglossal nucleus. labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, sensory root of trigeminal nerve, oral, interpolar and caudal part of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus and $C_{1-2}$ spinal ganglia. Following injection of Sugu$(GV_{26})$, labeled motor neurons were founded in facial nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in spinal trigeminal tract, trigeminal motor nucleus, mesencephalic trigeminal tract, oral. interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus, dorsal part of reticular part and $C_{1-2}$ spinal ganglia. Following injection of Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, inferior olovary nucleus, medullary reticular field and lamina I-IV of $C_{1-2}$ spinal cord. Location of nerve cell body and nerve fibers projecting to the meridian points related to the facial nerve paralysis in the rats were found in facial nucleus and trigeminal motor nucleus. Sensory neurone were found in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius. lateral reticular nucleus, medullary reticular field.

  • PDF

Effects of Sintongchukeo-tang on the Cultured Spinal Sensory Neurons Injured by Hydrogen Peroxide (신통축어탕(身痛逐瘀湯)이 Hydrogen Peroxide에 의해 손상(損傷)된 배양(培養) 척수감각신경세포(脊髓感覺神經細胞)에 미치는 영향(影響))

  • Lee, Kye-Seung;Na, Young-Hoon;Cha, Yong-Suk;Heo, Yun;Kim, Do-Hwan;Han, Sang-Hyok;Park, Byong-Min;Lee, In;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.557-565
    • /
    • 2001
  • Objectives : This study was carried out to examine toxic effect of Sintongchukeo-tang on cultured mouse spinal sensory neurons inhibited by neurotoxicity induced by hydrogen peroxide. Methods : MTT assay, NR assay, LDH and neurofilament assay were performed after spinal sensory neurons were preincubater with various concentrations of Sintongchukeo-tang water extract before treatment of cells with hydrogen peroxide. Results : Hydrogen peroxide induced ceil degeneration such as the decrease of cell viability was measured by MTT and NR assay in the cultured mouse spinal sensory neurons. Sintongchukeo-tang water extract was effective in the decrease of LDH activities of neurons produced by hydrogen peroxide. Sintongchukeo-tang water extract was effective in the increase of amount of neurofilaments damaged by hydrogen peroxide. Conclusions : From the above results, it is suggested that hydrogen peroxide induces the inhibition of cell viability in cultured mouse spinal sensory neurons and Sintongchukeo-tang water extract was effective in cultured neurons damaged by hydrogen peroxide.

  • PDF

Neuroanatomical Comparative Studies on the Motor and Sensory Neurons Associated with Cheonji(PC1) in the Rats (흰쥐에서 천지(PC1)와 관련된 운동신경과 감각신경의 분포영역에 대한 신경해부학적 연구)

  • Lee, Sun-Ho;Lee, Chang-Hyun;Lee, Sang-Ryong
    • Korean Journal of Acupuncture
    • /
    • v.32 no.3
    • /
    • pp.136-143
    • /
    • 2015
  • This study was performed to comparative investigate the distribution of primary sensory and motor neurons associated with Cheonji(PC1) acupoint by using neural tracing technique. A total 4 SD rats were used in the present study. After anesthesia, the rats received microinjection of $6{\mu}l$ of cholera toxin B subunit(CTB) into the corresponding sites of the acupoints Cheonji(PC1) in the human body for observing the distribution of the related primary sensory neurons in dorsal root ganglia(DRGs) and motor neurons in the spinal cord(C3~T4) and sympathetic ganglia. Three days after the microinjection, the rats were anesthetized and transcardially perfused saline and 4% paraformaldehyde, followed by routine section of the DRGs, sympathetic chain ganglia(SCGs) and spinal cord. Labeled neurons and nerve fibers were detected by immunohistochemical method and observed by light microscope equipped with a digital camera. The labeled neurons were recorded and counted. From this research, the distribution of primary sensory and motor neurons associated with Cheonji(PC1) acupoints were concluded as follows. Muscle meridian related Cheonji(PC1) are controlled by spinal segments of C5~T1, C6~T4, respectively.

Sympathetic Excitation of Afferent Neurons within Dorsal Root Ganglia in a Rat Model of Sympathetically Medicated Pain (교감신경 중재 통증 보유 모델 쥐에서 교감신경 활동에 의한 배근절세포의 흥분성)

  • Leem, Joong-Woo;Kang, Min-Jung;Paik, Kwang-Se;Nam, Yong-Taek
    • The Korean Journal of Pain
    • /
    • v.9 no.1
    • /
    • pp.26-38
    • /
    • 1996
  • In a normal state, sympathetic efferent activity does not elicit discharges of sensory neurons, whereas it becomes associated with and excites sensory neurons in a pathophysiological state such as injury to a peripheral nerve. Although this sympathetic-sensory interaction is reportedly adrenergic, involved subtypes of adrenoreceptors are not yet clearly revealed. The purpose of this study was to determine which adrenorceptor subtypes were involved in sympathetic-sensory interaction that was developed in rats with an experimental peripheral neuropathy. Using rats that received a tight ligation of one or two of L4-L6 spinal nerves 10~15 days previously, a recording was made from afferent fibers in microfilaments teased from the dorsal root that was in continuity with the ligated spinal nerve. Electrical stimulation of sympathetic preganglionic fibers in T13 or L1 ventral root (50 Hz, 2-5 mA. 0.5 ms pulse duration, 10 sec) was made to see if the activity of recorded afferents was modulated. About half of afferents showing spontaneous discharges responded to sympathetic stimulation, and had the conduction velocities in the A-fiber range. Most of the sympathetically induced afferent responses were excitation. This sympathetically induced excitation occurred in the dorsal root ganglion (DRG), and was blocked by yohimbine (${\alpha}_2$ blocker), neither by propranolol ($\beta$ blocker) not by prazosine (${\alpha}_1$ blocker). The results suggest that after spinal nerve ligation, sympathetic efferents interact with sensory neurons having A-fiber axons in DRG where adrenaline released from sympathetic nerve endings excites the activity of sensory neurons by acting on 2-adrenoreceptors. This 2-adrenoreceptor mediated excitation of sensory neurons may account for sympathetic involvement in neuropathic pain.

  • PDF