• Title/Summary/Keyword: sensors and actuators

Search Result 449, Processing Time 0.031 seconds

Prolonging Network Lifetime by Optimizing Actuators Deployment with Probabilistic Mutation Multi-layer Particle Swarm Optimization

  • Han, Yamin;Byun, Heejung;Zhang, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2959-2973
    • /
    • 2021
  • In wireless sensor and actuator networks (WSANs), the network lifetime is an important criterion to measure the performance of the WSAN system. Generally, the network lifetime is mainly affected by the energy of sensors. However, the energy of sensors is limited, and the batteries of sensors cannot be replaced and charged. So, it is crucial to make energy consumption efficient. WSAN introduces multiple actuators that can be regarded as multiple collectors to gather data from their respective surrounding sensors. But how to deploy actuators to reduce the energy consumption of sensors and increase the manageability of the network is an important challenge. This research optimizes actuators deployment by a proposed probabilistic mutation multi-layer particle swarm optimization algorithm to maximize the coverage of actuators to sensors and reduce the energy consumption of sensors. Simulation results show that this method is effective for improving the coverage rate and reducing the energy consumption.

Development of the Vibration Isolation System using Piezoceramic Sensors and Actuators (압전세라믹 감지기와 작동기를 이용한 방진 시스템 개발)

  • Seok Heo;Moon K. Kwak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.309.2-309
    • /
    • 2002
  • This paper is concerned with the development of the vibration isolation system using piezoelectric actuators and sensors. The active vibration absorber system consists of 4 pairs of PZT actuators bonded on aluminum plates making s- shaped device. Hence, the active system is directly connected to the passive system. The rubber attached to the end of the beam is connected to the upper base as a structural member. It allows bending thus maximizing the vertical movement generated by the piezoceramic actuators. (omitted)

  • PDF

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.

Fabrication Uncertainty and Noise Issues in High-Precision MEMS Actuators and Sensors

  • Cho, Young-Ho;Lee, Won-Chul;Han, Ki-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.280-287
    • /
    • 2002
  • We present technical issues involved in the development of actuators and sensors for applications to high-precision Micro Electro Mechanical System (MEMS). The technical issues include fabrication uncertainty and noise disturbance, causing major difficulties for MEMS to achieve high-precision actuation and detection functions. For nano-precision actuators, we solve the fabrication instability and electrical noise problems using digital actuators coupled with nonlinear mechanical modulators. For the high-precision capacitive sensors, we present a branched finger electrodes using high-amplitude anti-phase sensing signals. We also demonstrate the potential applications of the nanoactuators and nanodetectors to high-precision positioning MEMS.

Magneto-Mechatronics : A New Approach to Sensors and Actuators for Next-Generation Biomedical and Rehabilitation Devices (자기 메카트로닉스 : 차세대 의공학 및 재활 기기 개발을 위한 센서와 액추에이터의 새로운 접근방법)

  • Yu, Chang Ho;Kim, Sung Hoon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Magnetic sensors and actuators have been widely used in industry and medical fields. Integrated systems based on sensors and actuators are defined as mechatronics that is the general combination of mechanics and electronics. Recently, magnetic wireless sensors and actuators have been developed and used at a systematic level. In particular, their mechanisms depend on magnetic, such as magnetic material and physical phenomena. However, their research boundary has not been clear. Researchers talk of magnetic micro-robots, magnetic actuators and sensors. Therefore, a new and correct definition is required. In this study, we introduce the advanced and extended concept of mechatronics, which is a magneto-mechantronics for biomedical and rehabilitation. Among various applications, we focused on wireless pump and sensing system for blood vessel rehabilitation and local motion capture, respectively.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

On FEM modeling of piezoelectric actuators and sensors for thin-walled structures

  • Marinkovic, Dragan;Marinkovic, Zoran
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.411-426
    • /
    • 2012
  • Thin-walled adaptive structures render a large and important group of adaptive structures. Typical material system used for them is a composite laminate that includes piezoelectric material based sensors and actuators. The piezoelectric active elements are in the form of thin patches bonded onto or embedded into the structure. Among different types of patches, the paper considers those polarized in the thickness direction. The finite element method (FEM) imposed itself as an essential technical support for the needs of structural design. This paper gives a brief description of a developed shell type finite element for active/adaptive thin-walled structures and the element is, furthermore, used as a tool to consider the aspect of mesh distortion over the surface of actuators and sensors. The aspect is of significance for simulation of behavior of adaptive structures and implementation of control algorithms.

Development of the Vibration Isolation System using Piezoceramic Sensors and Actuators (압전세라믹 감지기와 작동기를 이용한 방진 시스템 개발)

  • Heo, Seok;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.6-11
    • /
    • 2002
  • This paper is concerned with the development of the vibration isolation system using piezoelectric actuators and sensors. The active vibration absorber system consists of 4 pairs of PZT actuators bonded on aluminum plates. Hence, the active system is directly connected to the passive system. The rubber attached to the end of the beam is connected to the upper base as a structural member. It allows bending thus maximizing the vertical movement generated by the piezoceramic actuators. The piezoceramic sensors consists of 4 PZT sensors known to tilting, rolling and vertical movement. This paper also presents the development and the movement of the system.

  • PDF

Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators (압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화)

  • 송명관;한인선;김선훈;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.269-278
    • /
    • 2003
  • In this study, the method of the finite element modeling for free vibration control of beam-type smart structures with bonded plate-type piezoelectric sensors and actuators is proposed. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived, The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. Therefore, by analyzing beam-type smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by applying voltages to piezoelectric actuators and monitoring of the structural behavior by sensing voltages of piezoelectric sensors. By using the smart beam finite element and constant-gain feed back control scheme, the formulation of the free vibration control for the beam structures with bonded plate-type piezoelectric sensors and actuators is proposed.

  • PDF

Multiple model switching adaptive control for vibration control of cantilever beam with varying load using MFC actuators and sensors

  • Gao, Zhiyuan;Huang, Jiaqi;Miao, Zhonghua;Zhu, Xiaojin
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.559-567
    • /
    • 2020
  • Vibration at the tip of various flexible manipulators may affect their operation accuracy and work efficiency. To suppress such vibrations, the feasibility of using MFC actuators and sensors is investigated in this paper. Considering the convergence of the famous filtered-x least mean square (FXLMS) algorithm could not be guaranteed while it is employed for vibration suppression of plants with varying secondary path, this paper proposes a new multiple model switching adaptive control algorithm to implement the real time active vibration suppression tests with a new multiple switching strategy. The new switching strategy is based on a cost function with reconstructed error signal and disturbance signal instead of the error signal from the error sensor. And from a robustness perspective, a new variable step-size sign algorithm (VSSA) based FXLMS algorithm is proposed to improve the convergence rate. A cantilever beam with varying tip mass is employed as flexible manipulator model. MFC layers are attached on both sides of it as sensors and actuators. A co-simulation platform was built using ADAMS and MATLAB to test the feasibility of the proposed algorithms. And an experimental platform was constructed to verify the effectiveness of MFC actuators and sensors and the real-time vibration control performance. Simulation and experiment results show that the proposed FXLMS algorithm based multiple model adaptive control approach has good convergence performance under varying load conditions for the flexible cantilever beam, and the proposed FX-VSSA-LMS algorithm based multiple model adaptive control algorithm has the best vibration suppression performance.