• Title/Summary/Keyword: sensorless scheme

Search Result 189, Processing Time 0.026 seconds

Excitation Scheme to Enhance Output Torque of Sensorless BLDC Motor to Drive the Flight Attitude Control Fins of a Guided Artillery Munition (유도형 탄약의 조정날개 구동용 Sensorless BLDC 전동기의 출력 토크 향상을 위한 여자 기법)

  • Lee, Tae-Hyung;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.9-13
    • /
    • 2015
  • In this paper, a new excitation scheme is developed to increase the output torque of the sensorless BLDC(Brushless DC) motor(BLDCM), which drives fins to control the flight attitude of a guided artillery munition. The proposed scheme is based on a 12-step excitation strategy combining two-phase and three-phase excitations. The proposed 12-step excitation scheme can produce more torque than a typical 6-step scheme for the start-up and synchronous operation in the sensorless BLDCM drive. The simulation and experimental results on the sensorless BLDCM drive system to control the fin were verified the validity of the proposed scheme.

  • PDF

A New Sensorless Control Scheme Using Simple Duty Feedback Technique in DC-DC Converters (DC-DC 컨버터에서 Duty Feedback 을 이용한 새로운 센서리스 제어 기법)

  • Noh Hyeong-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.115-118
    • /
    • 2001
  • This paper presents a new sensorless control scheme using simple duty signal feedback technique in DC-DC converters. The proposed sensorless control scheme (DFC) has the characteristics that they show the same as operation performance of current mode control by using duty feedback technique without current sensor as well as present better dynamic response performance than conventional sensorless current mode control (SCM) in case that input source is perturbed by step change or DC input source includes the . harmonics. Also, the proposed control scheme has good noise immunity and simple control circuits since they have one feedback loop, and can be applied to all DC-DC converters. The concept and control principles of the proposed control scheme are explained in detail and the validity of the proposed control scheme is verified through several interesting simulated results.

  • PDF

Sensorless Control of PMSM by a Four-Switch Inverter with Compensation of Voltage Distortion and Adjustment of Position Estimation Gain

  • Kim, Byeong-Han;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.100-109
    • /
    • 2017
  • This paper proposes performance improvement schemes for sensorless PMSM control drive using a four-switch three-phase inverter (so-called B4 inverter). In the proposed scheme, the back-EMF estimation-based sensorless control algorithm is used to control the brushless PMSM without position sensors. In order to have stable operation, this paper presents a gain adjustment scheme that compensates the reduction of stable sensorless operation range as long as the rotor speed increases. In B4 topology, the center point of dc-link capacitors is connected to 3-phase load, and it is prone to have the load current distortion. Hence, to mitigate this problem, a distortion compensation scheme by modifying voltage commands using measured dc-link potentials is proposed in this paper. The validity of the proposed method is evaluated by simulations and experiments.

Stability of Sensorless Speed Control of PMSM Using State Observer (상태관측기를 이용한 영구자석 동기전동기의 센서리스 속도제어의 안정도)

  • Son, M.K.;Lee, D.H.;Lee, H.J.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.12-14
    • /
    • 1998
  • Sensorless PMSM is much studied for the industrial applications and home appliances because a mechanical sensor reduces reliability and increases cost. This paper studies the stability of sensorless speed control of PMSM using state observer. Sensorless control scheme using state observer is known as a scheme having a comparatively good performance. Several papers have studied the stability of state observer control scheme, but have not considered parameter variation which is important to sensorless control. This paper studies the stability through computer simulation in case of parameter variation.

  • PDF

Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles (전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어)

  • Jeon, Yong-Hee;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

Sensorless Speed Control and Starting Algorithm using Current Control of SPM Synchronous Motor (영구자석 표면부착형 동기전동기의 전류제어기를 이용한 센서리스 기동방법 및 속도제어)

  • Baik, In-Cheol;Lee, Ju-Suk;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.523-529
    • /
    • 2013
  • A sensorless speed control of a permanent magnet synchronous motor(PMSM) which utilizes MRAS based scheme to estimate rotor speed and position is presented. Considering an error between real and estimated rotor position values, a state equation of PMSM in the synchronous d-q reference frame is represented. A state equation of model system which uses estimated speed and nominal parameter values is expressed. To minimize the errors between the derivatives of d-q axis currents of real and model system, MRAS based adaptation mechanisms for the estimation of rotor speed and position are derived. On the other hand, for the acceleration stage of motor just before the sensorless operation, an acceleration scheme using only d-axis current control is proposed. To show the validity of the proposed scheme, experimental works are carried out and evaluated. During acceleration stage, the acceleration scheme using only d-axis current command shows good acceleration performance and controlled current level. For the sensorless operation, at low speed (5% of rated speed), a good performance is observed.

Sensorless Scheme for Interior Permanent Magnet Synchronous Motors with a Wide Speed Control Range

  • Hong, Chan-Hee;Lee, Ju;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2173-2181
    • /
    • 2016
  • Permanent magnet synchronous motors (PMSMs) have higher torque and superior output power per volume than other types of AC motors. They are commonly used for applications that require a large output power and a wide range of speed. For precise control of PMSMs, knowing the accurate position of the rotor is essential, and normally position sensors such as a resolver or an encoder are employed. On the other hand, the position sensors make the driving system expensive and unstable if the attached sensor malfunctions. Therefore, sensorless algorithms are widely researched nowadays, to reduce the cost and cope with sensor failure. This paper proposes a sensorless algorithm that can be applied to a wide range of speed. The proposed method features a robust operation at low-speed as well as high-speed ranges by employing a gain adjustment scheme and intermittent voltage pulse injection method. In the proposed scheme the position estimation gain is tuned by a closed loop manner to have stable operation in tough driving environment. The proposed algorithm is fully verified by various experiments done with a 1 kW outer rotor-type PMSM.

A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator (파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.

Input AC Voltage Sensorless Control Scheme for a Three-Phase PWM Rectifier in Wind Power Generation System

  • Wu, YanJun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.472-476
    • /
    • 2012
  • In this paper, a sensorless control scheme for a three-phase bi-directional voltage-type PWM rectifier in wind power generation system that operates without the input AC voltage sensors (generator side) is described. The basic principles and classification of the PWM rectifier are analyzed, and then the three-phase mathematical model of the input AC voltage sensorless PWM rectifier control system is established. The proposed scheme has been developed in order to lower the cost of the three-phase PWM rectifier but still achieve excellent output voltage regulation, limited current harmonic content, and unity input power factor.

Sensorless Estimation of Single-Phase Hybrid SRM using Back-EMF

  • Tang, Ying;He, Yingjie;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.198-206
    • /
    • 2017
  • This paper presents a novel scheme to estimate the rotor position of a single-phase hybrid switched reluctance motor (HSRM). The back-EMF generated by the permanent magnet (PM) field whose performance is motor parameter independent is adopted as an index to achieve the sensorless control. The differential value of back-EMF is calculated by hardware and processed by DSP to capture a fixed rotor position four times for every mechanical cycle. In addition, to accomplish the normal starting of HSRM, the determination method of the turn-off time position at the first electrical cycle is also proposed. In this way, a sensorless operation scheme with adjustable turn on/off angle can be achieved without substantial computation. The experimental verification using a prototype drive system is provided to demonstrate the viability of the proposed position estimation scheme.