• Title/Summary/Keyword: sensor technology

Search Result 8,681, Processing Time 0.033 seconds

Fabrication of a Pressure Difference Type Gas Flow Sensor using ICP-RIE Technology (ICP-RIE 기술을 이용한 차압형 가스유량센서 제작)

  • Lee, Young-Tae;Ahn, Kang-Ho;Kwon, Yong-Taek;Takao, Hidekuni;Ishida, Makoto
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we fabricated pressure difference type gas flow sensor using only dry etching technology by ICP-RIE(inductive coupled plasma reactive ion etching). The sensor's structure consists of a common shear stress type piezoresistive pressure sensor with an orifice fabricated in the middle of the sensor diaphragm. Generally, structure like diaphragm is fabricated by wet etching technology using TMAH, but we fabricated diaphragm by only dry etching using ICP-RIE. To equalize the thickness of diaphragm we applied insulator($SiO_2$) layer of SOI(Si/$SiO_2$/Si-sub) wafer as delay layer of dry etching. Size of fabricated diaphragm is $1000{\times}1000{\times}7\;{\mu}m^3$ and overall chip $3000{\times}3000{\times}7\;{\mu}m^3$. We measured the variation of output voltage toward the change of gas pressure to analyze characteristics of the fabricated sensor. Sensitivity of fabricated sensor was relatively high as about 1.5mV/V kPa at 1kPa full-scale. Nonlinearity was below 0.5%F.S. Over-pressure range of the fabricated sensor is 100kPa or more.

  • PDF

Development of Ultrasonic Sensor Block for Software Education based on Physical Computing (피지컬 컴퓨팅 기반의 소프트웨어 교육을 위한 초음파센서블록 개발)

  • Kim, Dong-Yeon;An, Jae-Yong;Oh, Junhyeok;Lim, Tae Yoon;Won, JinSub;Hwang, Jun Ho;Woo, Deok Ha;Lee, Seok
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.543-545
    • /
    • 2019
  • 4차산업혁명 시대가 도래함에 따라서 기존의 단순 지식 습득 위주의 교육에서 코딩을 통한 창의적 사고와 문제 해결능력을 키워주는 교육이 주목받기 시작하였다. 이러한 시대에 흐름에 발맞추어 교육부는 2019년부터 모든 초중고등학교에서 소프트웨어 교육을 정규 교육과정에 포함 시킨다고 밝혔다. 따라서 본 논문에서는 이미 수년 전부터 소프트웨어 중점 교육을 실시하고 있던 해외의 사례를 토대로 피지컬 컴퓨팅(Physical Computing) 기반의 소프트웨어 교육을 위한 초음파센서 블록을 개발하였다. 초음파센서블록은 학생들에게 익숙한 레고 안에 초음파센서와 아두이노를 내장하여 블록코딩을 활용한 콘텐츠 설계가 가능하다. 초음파센서블록을 입력장치로 사용하여 사전 연구를 통해 개발된 스위치, LED, 스피커 블록 등과 연동하여 학생들은 상상한 작품들을 블록코딩을 통해 실제로 구현해 볼 수 있다. 이 과정을 통해 학생들은 재미와 성취감을 느끼고 자발적인 학습 참여가 이루어질 것으로 예상된다.

Implementation of Vehicle Wiper Control System Using Image Sensor (이미지 센서를 이용한 차량 와이퍼 제어 시스템 구현)

  • Jeon, Jin-Young;Chang, Hyun-Sook;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.259-265
    • /
    • 2014
  • When raining or snowing, windshield wiper system is very important for safety of driver. However, manual wiper system frequently needed to be controlled for sufficient visibility and it was very uncomfortable. So, rain sensor which controls automatically was developed. This rain sensor technology uses optical sensing technique sensed the rainfall by receiving reflected light of rain dropped on the windshield. The technology used optical sensor was simple and easy to implement as a rain sensing system in the car. However, it is sometime shown low accuracy to measure rainfall on the windshield when affected by ambient lights from surroundings. It is also given inconvenience to the driver to control the car. To solving these problems, we propose a rain sensing system using image sensor and the fuzzy wiper control algorithm.

Implementation of Context-Aware Services Platform Supporting Mobile Agents

  • Kim, Jung-Rae;Huh, Jae-Doo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.225-228
    • /
    • 2005
  • A context-aware services platform supporting mobile agents consists of sensor nodes and a sensor coordinator. Sensor nodes collect environmental information and transmit the collected information to the sensor coordinator through wireless sensor networks. The sensor coordinator passes the information to the context-aware service module, and the mobile agent. The context-aware service module or the mobile agent performs services suitable for a user's situation based on the environmental information and a service actuation message is delivered to an actuation node through the sensor coordinator. In this paper, we present a context-aware services platform structure employed in our project, and describe context-aware services platform interfaces with a context-aware service module and mobile agents.

  • PDF

Development of Capacitive Water Level Sensor System for Boiler (보일러용 정전용량형 수위센서 시스템 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.103-107
    • /
    • 2021
  • In this paper, a capacitive water level sensor for boilers was developed. In order to accurately monitor the water level in a high-temperature boiler that generates a lot of precipitates, the occurrence of precipitates on the surface of the water level sensor should be small, and a sensor capable of measuring even if the sensor surface is somewhat contaminated is required. The capacitive water level sensor has a structure in which one of the two electrodes is insulated with Teflon coating, and the stainless steel package of the water level sensor is brought into contact with the water tank so that the entire water tank becomes another electrode of the water level sensor. A C-V converter that converts the capacitance change of the capacitive water level sensor into a voltage change was developed and integrated with the water level sensor to minimize noise. The performance of the developed capacitive water level sensor was evaluated through measurement.

Performance Enhancement of Emergency Rescue System using Surface Correlation Technology

  • Shin, Beomju;Lee, Jung Ho;Shin, Donghyun;Yu, Changsu;Kyung, Hankyeol;Lee, Taikjin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.183-189
    • /
    • 2020
  • In emergency rescue situations, the localization accuracy of the rescue requestor is a very important factor in determining the success or failure of the rescue. Indoors where Global Navigation Satellite System (GNSS) is not operated, there is no choice but to use Wi-Fi or LTE signals. However, the performance of the current emergency rescue system utilizing those RF signals is exceedingly low. In this study, the effectiveness of the surface correlation technology using the accumulated signal pattern of RF signals was verified in relation to the emergency localization technology. To validate the proposed system, we configured and tested an emergency rescue scenario in multi-floors building. When the emergency rescue was requested, it was confirmed that the initial localization error was large owing to the short length of the accumulated signal pattern. However, the localization error decreased over time, which eventually led to the accurate location information being delivered to the rescuer.

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.

Sensor placement selection of SHM using tolerance domain and second order eigenvalue sensitivity

  • He, L.;Zhang, C.W.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-208
    • /
    • 2006
  • Monitoring large-scale civil engineering structures such as offshore platforms and high-large buildings requires a large number of sensors of different types. Innovative sensor data information technologies are very extremely important for data transmission, storage and retrieval of large volume sensor data generated from large sensor networks. How to obtain the optimal sensor set and placement is more and more concerned by researchers in vibration-based SHM. In this paper, a method of determining the sensor location which aims to extract the dynamic parameter effectively is presented. The method selects the number and place of sensor being installed on or in structure by through the tolerance domain statistical inference algorithm combined with second order sensitivity technology. The method proposal first finds and determines the sub-set sensors from the theoretic measure point derived from analytical model by the statistical tolerance domain procedure under the principle of modal effective independence. The second step is to judge whether the sorted out measured point set has sensitive to the dynamic change of structure by utilizing second order characteristic value sensitivity analysis. A 76-high-building benchmark mode and an offshore platform structure sensor optimal selection are demonstrated and result shows that the method is available and feasible.

Surface acoustic wave gas sensors by utilizing the phase change (위상변화를 이용한 표면탄성파 가스센서)

  • Kim, Jin-Sang;Jung, Yong-Chul;Kang, Chong-Yun;Kim, Dal-Young;Nam, Chang-Woo;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.186-190
    • /
    • 2005
  • This paper describes the development of a surface acoustic wave gas sensor that is designed to detect volatile gas by monitering phase change of output signal as a function of time. The sensor consists of SAW oscillators with a center frequency of 100 MHz fabricated on $128^{\circ}$ Y-Z $LiNbO_{3}$ substrates. Experimental results, which show the phase change of output signal under the absorption of volatile gas onto sensors, are presented. The proposed sensor has the properties of high sensitivity compare to the conventional SAW gas sensor and chemical selectivity. Thus, it is thought these results are applicable for use in sensor array of an high performance electronic nose system.

Stage System for LCD Exposure Equipment Using Touch-type Displacement Sensor (접촉형 변위센서를 이용한 LCD노광기용 스테이지 시스템)

  • Yim, Kwang-Kuk;Seo, Hwa-Il;Cho, Hyun-Chan;Kim, Kwang-Sun;Kang, Heung-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.7-10
    • /
    • 2007
  • In an effort to reduce weaknesses of existing laser displacement sensor-based system, a sensing device for distance and balance of mask-substrate gap using touch-type displacement sensor was suggested. The device suggested in this study is expected to solve the problems of prices and reflections, by means of a touch-type sensor. LCD exposure equipment stage system including suggested sensing device was realized to assess the characteristics of sensing the balance and gap between mask and substrate. It was verified that a touch-type displacement sensor-based device to adjust the balance and distance of mask-substrate gap suggested in this study can be applicable to LCD expose equipment in practice.

  • PDF