• Title/Summary/Keyword: sensor stream

Search Result 180, Processing Time 0.044 seconds

Extension of ReInForM Protocol for (m,k)-firm Real-time Streams in Wireless Sensor Networks

  • Li, Bijun;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.231-236
    • /
    • 2012
  • For real-time wireless sensor network applications, it is essential to provide different levels of quality of service (QoS) such as reliability, low latency, and fault-tolerant traffic control. To meet these requirements, an (m,k)-firm based real-time routing protocol has been proposed in our prior work, including a novel local transmission status indicator called local DBP (L_DBP). In this paper, a fault recovery scheme for (m,k)-firm real-time streams is proposed to improve the performance of our prior work, by contributing a delay-aware forwarding candidates selection algorithm for providing restricted redundancy of packets on multipath with bounded delay in case of transmission failure. Each node can utilize the evaluated stream DBP (G_DBP) and L_DBP values as well as the deadline information of packets to dynamically define the forwarding candidate set. Simulation results show that for real-time service, it is possible to achieve both reliability and timeliness in the fault recovery process, which consequently avoids dynamic failure and guarantees meeting the end-to-end QoS requirement.

ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD

  • Biswajit Biswal;Andrew Duncan;Zaijing Sun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3996-4004
    • /
    • 2022
  • The data collected by the In-Situ Decommissioning (ISD) sensors are time-specific, age-specific, and developmental stage-specific. Research has been done on the stream data collected by ISD testbed in the recent few years to seek both frequent episodes and abnormal frequent episodes. Frequent episodes in the data stream have confirmed the daily cycle of the sensor responses and established sequences of different types of sensors, which was verified by the experimental setup of the ISD Sensor Network Test Bed. However, the discovery of abnormal frequent episodes remained a challenge because these abnormal frequent episodes are very small signals and may be buried in the background noise of voltage and current changes. In this work, we proposed Advanced Data Analytics (ADA) methods that are applied to the baseline data to identify frequent episodes and extended our approach by adding more features extracted from the baseline data to discover abnormal frequent episodes, which may lead to the early indicators of ISD system failures. In the study, we have evaluated our approach using the baseline data, and the performance evaluation results show that our approach is able to discover frequent episodes as well as abnormal frequent episodes conveniently.

Efficient Stream Sequence Matching Algorithms for Handheld Devices over Time-Series Stream Data (시계열 스트림 데이터 상에서 핸드헬드 디바이스를 위한 효율적인 스트림 시퀀스 매칭 알고리즘)

  • Moon Yang-Sae;Loh Woong-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8B
    • /
    • pp.736-744
    • /
    • 2006
  • For the handhold devices, minimizing repetitive CPU operations such as multiplications is a major factor for their performances. In this paper, we propose efficient algorithms for finding similar sequences from streaming time-series data such as stock prices, network traffic data, and sensor network data. First, we formally define the problem of similar subsequence matching from streaming time-series data, which is called the stream sequence matching in this paper. Second, based on the window construction mechanism adopted by the previous subsequence matching algorithms, we present an efficient window-based approach that minimizes CPU operations required for stream sequence matching. Third, we propose a notion of window MBR and present two stream sequence matching algorithms based on the notion. Fourth, we formally prove correctness of the proposed algorithms. Finally, through a series of analyses and experiments, we show that our algorithms significantly outperform the naive algorithm. We believe that our window-based algorithms are excellent choices for embedded stream sequence matching in handhold devices.

A Method of Frequent Structure Detection Based on Active Sliding Window (능동적 슬라이딩 윈도우 기반 빈발구조 탐색 기법)

  • Hwang, Jeong-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • In ubiquitous computing environment, rising large scale data exchange through sensor network with sharply growing the internet, the processing of the continuous stream data is required. Therefore there are some mining researches related to the extracting of frequent structures and the efficient query processing of XML stream data. In this paper, we propose a mining method to extract frequent structures of XML stream data in recent window based on the active window sliding using trigger rule. The proposed method is a basic research to control the stream data flow for data mining and continuous query by trigger rules.

A Multi-dimensional Query Processing Scheme for Stream Data using Range Query Indexing (범위 질의 인덱싱을 이용한 스트림 데이터의 다중 질의처리 기법)

  • Lee, Dong-Un;Rhee, Yun-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2009
  • Stream service environment demands real-time query processing for voluminous data which are ceaselessly delivered from tremendous sources. Typical R-tree based query processing technologies cannot efficiently handle such situations, which require repetitive and inefficient exploration from the tree root on every data event. However, many stream data including sensor readings show high locality, which we exploit to reduce the search space of queries to explore. In this paper, we propose a query processing scheme exploiting the locality of stream data. From the simulation, we conclude that the proposed scheme performs much better than the traditional ones in terms of scalability and exploration efficiency.

A New Auto-Localization Scheme in Sensor Networks (센서 네트워크상의 새로운 자동 위치결정 방법)

  • Kim, Sung-Ho;Zhang, Cong Yi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.925-930
    • /
    • 2008
  • Many sensor network applications require that each node's sensor data stream be annotated with its physical location in some coordinate system. Equipping GPS on every sensor node is often expensive and does not work in indoor deployments. Recently, cricket-based localization system is often used for indoor localization system. It is very important to know the exact position of beacons in cricket-based localization system for identifying moving sensor node's position. In this paper, a new method, Mobile Listener Detect Algorithm (MLD) which can automatically calculate the unknown newly installed beacons is proposed. For the verification of the feasibility of the proposed scheme, we have conducted several experiments.

Development of On-Line Diagnostic Expert System : Heuristics and Influence Diagrams (현장진단 전문가 시스템의 개발 : 휴리스틱과 인플루언스 다이아그램)

  • Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.95-113
    • /
    • 1997
  • This paper outlines a framework for a diagnosis of a complex system with uncertain information. Sensor validation ploys a vital role in the ability of the overall system to correctly determine the state of a system monitored by imperfect sensors. Here, emphases are put on the heuristic technology and post-processor for reasoning. Heuristic Sensor Validation (HSV) exploits deeper knowledge about parameter interaction within the plant to cull sensor faults from the data stream. Finally the modified probability distributions and validated data are used as input to the reasoning scheme which is the runtime version of the influence diagram. The output of the influence diagram is a diagnostic mapping from the symptoms or sensor readings to a determination of likely failure modes. Once likely failure modes are identified, a detailed diagnostic knowledge base suggests corrective actions to improve performance. This framework for a diagnostic expert system with sensor validation and reasoning under uncertainty applies in $HEATXPRT^{TM}$ a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants [1].

  • PDF

A holistic distributed clustering algorithm based on sensor network (센서 네트워크 기반의 홀리스틱 분산 클러스터링 알고리즘)

  • Chen Ping;Kee-Wook Rim;Nam Ji-Yeun;Lee KyungOh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.874-877
    • /
    • 2008
  • Nowadays the existing data processing systems can only support some simple query for sensor network. It is increasingly important to process the vast data streams in sensor network, and achieve effective acknowledges for users. In this paper, we propose a holistic distributed k-means algorithm for sensor network. In order to verify the effectiveness of this method, we compare it with central k-means algorithm to process the data streams in sensor network. From the evaluation experiments, we can verify that the proposed algorithm is highly capable of processing vast data stream with less computation time. This algorithm prefers to cluster the data streams at the distributed nodes, and therefore it largely reduces redundant data communications compared to the central processing algorithm.

A Novel Way of Context-Oriented Data Stream Segmentation using Exon-Intron Theory (Exon-Intron이론을 활용한 상황중심 데이터 스트림 분할 방안)

  • Lee, Seung-Hun;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.799-806
    • /
    • 2021
  • In the IoT environment, event data from sensors is continuously reported over time. Event data obtained in this trend is accumulated indefinitely, so a method for efficient analysis and management of data is required. In this study, a data stream segmentation method was proposed to support the effective selection and utilization of event data from sensors that are continuously reported and received. An identifier for identifying the point at which to start the analysis process was selected. By introducing the role of these identifiers, it is possible to clarify what is being analyzed and to reduce data throughput. The identifier for stream segmentation proposed in this study is a semantic-oriented data stream segmentation method based on the event occurrence of each stream. The existence of identifiers in stream processing can be said to be useful in terms of providing efficiency and reducing its costs in a large-volume continuous data inflow environment.