• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.032 seconds

A Study on the Performance of Mechanical Crash Sensors (기계식 충돌 센서의 성능 해석)

  • Kim, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.136-142
    • /
    • 1995
  • An analysis model is proposed for the performance prediction of typical ball and tube type mechanical crash sensors based upon mass-spring-viscous gas damping idealization. Also a construction of mechanical crash pulse generator is suggested as an experimental tool for calibration and verification of model predictions. A sensor tuning procedure for a particular set of crash pulses is suggested based upon the analysis model and the experimental tools.

  • PDF

A Design for Medical Information System of Emergency Situation Prediction using Body Signal (생체신호를 이용한 응급상황 예측 의료정보 시스템의 설계)

  • Park, Sun;Kim, Chul Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.4
    • /
    • pp.28-34
    • /
    • 2010
  • In this paper, we proposes a emergency medical information system for predicting emergency situation by using the body's vital signs. Main research of existing emergency system has focused on body sensor networks. The problem of these studies have a delay of the emergency first aid since occurring of an emergency situation send a message of emergency situation to user. In the serious situation, patients of these problem can lead to death. To solve this problem, it need to the prediction of emergency situation for doing quickly the First Aid with identify signs of a pre-emergency situations until an emergency occurs. In this paper, the sensor network technology, the security technology, the internet information retrieval techniques, data mining technology, and medical information are studied for the convergence of medical information systems of the prediction of emergency situations.

  • PDF

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

Real-time Error Detection Based on Time Series Prediction for Embedded Sensors (임베디드 센서를 위한 시계열 예측 기반 실시간 오류 검출 기법)

  • Kim, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.11-21
    • /
    • 2011
  • An embedded sensor is significantly influenced by its spatial environment, such as barriers or distance, through low power and signal strength. Due to these causes, noise data frequently occur in an embedded sensor. Because the information acquired from the embedded sensor exists in a time series, it is hard to detect an error which continuously takes place in the time series information on a realtime basis. In this paper, we proposes an error detection method based on time-series prediction that detects error signals of embedded sensors in real time in consideration of the physical characteristics of embedded devices. The error detection method based on time-series prediction proposed in this paper determines errors in generated embedded device signals using a stable distance function. When detecting errors by monitoring signals from an embedded device, the stable distance function can detect error signals effectively by applying error weight to the latest signals. When detecting errors by monitoring signals from an embedded device, the stable distance function can detect error signals effectively by applying error weight to the latest signals.

A Design and Implementation of Multimedia Pest Prediction Management System using Wireless Sensor Network (무선 센서 네트워크를 이용한 멀티미디어 병해충 예측 관리 시스템 설계 및 구현)

  • Lim, Eun-Cheon;Shin, Chang-Sun;Sim, Chun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2007
  • The majority of farm managers growing the garden products in greenhouse concern massively about the diagnosis and prevention of the breeding and extermination for pests. especially, the managing problem for pests turns up as main issue. In the paper, we first build a wireless sensor network with soil and environment sensors such as illumination, temperature and humidity. And then we design and implement multimedia pest predication and management system which is able to predict and manage various pest of garden products in greenhouse. The proposed system can support the database with information about the pests by building up wireless sensor network in greenhouse compared with existing high-priced PLC device as well as collect various environment information from soil, the interior of greenhouse, and the exterior of greenhouse. To verify the good capability of our system, we implemented several GUI interface corresponding desktop. web, and PDA mobile platform based on real greenhouse model. Finally, we can confirm that our system work well prediction and management of pest of garden products in greenhouse based on several platforms.

  • PDF

Moving Object Tracking Scheme based on Polynomial Regression Prediction in Sparse Sensor Networks (저밀도 센서 네트워크 환경에서 다항 회귀 예측 기반 이동 객체 추적 기법)

  • Hwang, Dong-Gyo;Park, Hyuk;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.44-54
    • /
    • 2012
  • In wireless sensor networks, a moving object tracking scheme is one of core technologies for real applications such as environment monitering and enemy moving tracking in military areas. However, no works have been carried out on processing the failure of object tracking in sparse sensor networks with holes. Therefore, the energy consumption in the existing schemes significantly increases due to plenty of failures of moving object tracking. To overcome this problem, we propose a novel moving object tracking scheme based on polynomial regression prediction in sparse sensor networks. The proposed scheme activates the minimum sensor nodes by predicting the trajectory of an object based on polynomial regression analysis. Moreover, in the case of the failure of moving object tracking, it just activates only the boundary nodes of a hole for failure recovery. By doing so, the proposed scheme reduces the energy consumption and ensures the high accuracy for object tracking in the sensor network with holes. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme reduces about 47% energy consumption for object tracking over the existing scheme and achieves about 91% accuracy of object tracking even in sensor networks with holes.

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

Improvement of a Context-aware Recommender System through User's Emotional State Prediction (사용자 감정 예측을 통한 상황인지 추천시스템의 개선)

  • Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.4
    • /
    • pp.203-223
    • /
    • 2014
  • This study proposes a novel context-aware recommender system, which is designed to recommend the items according to the customer's responses to the previously recommended item. In specific, our proposed system predicts the user's emotional state from his or her responses (such as facial expressions and movements) to the previous recommended item, and then it recommends the items that are similar to the previous one when his or her emotional state is estimated as positive. If the customer's emotional state on the previously recommended item is regarded as negative, the system recommends the items that have characteristics opposite to the previous item. Our proposed system consists of two sub modules-(1) emotion prediction module, and (2) responsive recommendation module. Emotion prediction module contains the emotion prediction model that predicts a customer's arousal level-a physiological and psychological state of being awake or reactive to stimuli-using the customer's reaction data including facial expressions and body movements, which can be measured using Microsoft's Kinect Sensor. Responsive recommendation module generates a recommendation list by using the results from the first module-emotion prediction module. If a customer shows a high level of arousal on the previously recommended item, the module recommends the items that are most similar to the previous item. Otherwise, it recommends the items that are most dissimilar to the previous one. In order to validate the performance and usefulness of the proposed recommender system, we conducted empirical validation. In total, 30 undergraduate students participated in the experiment. We used 100 trailers of Korean movies that had been released from 2009 to 2012 as the items for recommendation. For the experiment, we manually constructed Korean movie trailer DB which contains the fields such as release date, genre, director, writer, and actors. In order to check if the recommendation using customers' responses outperforms the recommendation using their demographic information, we compared them. The performance of the recommendation was measured using two metrics-satisfaction and arousal levels. Experimental results showed that the recommendation using customers' responses (i.e. our proposed system) outperformed the recommendation using their demographic information with statistical significance.

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

Development of NMR Based Prototype Sensor for Non-destructive Sugar Content Measurement in Fruits. (수소 핵자기공명을 이용한 과실의 비괴적 당도측정 시작기의 개발)

  • 조성인;정창호
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.336-342
    • /
    • 1996
  • A 4.1MHz$1^H$ Nuclear Magnetic Resonance(NMR) sensor was designed and manufactured to evaluate the internal quality of fruits. The magnet console having 963gauss magnetic field induction was used for the NMR sensor. To optimize and evaluate the NMR sensor, glycerol and sugar-water solutions were used. $^1$H(proton) resonance signals were used to estimate the sugar contents in fruits. Artificial neural network models were developed to predict sugar contents in fruits from the proton resonance signals. The standard errors of prediction(SEP) were 0.565(apple), 0.394(pear) and 0.415(kiwi), respectively. The result implied that it was possible to evaluate apple, pear and kiwi into 3 grades using the NMR sensor.

  • PDF